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Porous lonic Polymers as a Robust and Efficient Platform
for Capture and Chemical Fixation of Atmospheric CO,

Qi Sun*”® Yingyin Jin*,' Briana Aguila,”” Xiangju Meng,** Shenggian Ma,*™ and

Feng-Shou Xiao™

Direct use of atmospheric CO, as a C; source to synthesize
high-value chemicals through environmentally benign process-
es is of great interest, yet challenging. Porous heterogeneous
catalysts that are capable of simultaneously capturing and
converting CO, are promising candidates for such applications.
Herein, a family of organic ionic polymers with nanoporous
structure, large surface area, strong affinity for CO,, and
very high density of catalytic active sites (halide ions) was
synthesized through the free-radical polymerization of vinyl-
functionalized quaternary phosphonium salts. The resultant
porous ionic polymers (PIPs) exhibit excellent activities in the
cycloaddition of epoxides with atmospheric CO,, outperform-
ing the corresponding soluble phosphonium salt analogues

Introduction

Accumulation of the primary greenhouse gas CO, in the at-
mosphere is suspected as the main culprit for global climate
changes. Reduction of CO, emissions is now a matter of genu-
ine public concern and tremendous efforts have been devoted
to address this issue."" Currently, carbon capture and seques-
tration (CCS) has been projected as a feasible approach.” The
captured CO, is proposed to be injected into underground
reservoirs and stored as waste. Alternatively, catalytic transfor-
mation of the captured CO, into high-value chemicals would
be more desirable.”’ Toward this end, the cycloaddition of CO,
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and ranking among the highest of known metal-free catalytic
systems. The high CO, uptake capacity of the PIPs facilitates
the enrichment of CO, molecules around the catalytic centers,
thereby benefiting its conversion. We have demonstrated for
the first time that atmospheric CO, can be directly converted
to cyclic carbonates at room temperature using a heterogene-
ous catalytic system under metal-solvent free conditions. More-
over, the catalysts proved to be robust and fully recyclable,
demonstrating promising potential for practical utilization for
the chemical fixation of CO,. Our work thereby paves a way to
the advance of PIPs as a new type of platform for capture and
conversion of CO,.

to an epoxide to produce cyclic carbonates is quite promising
because of their wide applications in pharmaceutical and fine
chemicals and high atomic efficiency of those transforma-
tions.” Thus far, a variety of efficient catalytic systems involv-
ing metal species from simple alkali salts to classical organo-
metallic complexes as well as related heterogeneous catalysts
were developed and studied.” Despite of these achievements,
the search for more environmentally benign processes, in par-
ticular for metal-free catalytic systems, has been an impetus
for research in both industry and academia.”’ Organic ionic
compounds such as alkyl ammonium or phosphonium halides
proved to be extremely effective for high-yield conversion of
epoxides with CO, to form the corresponding cyclic carbon-
ate.”

Nevertheless, the complicated product separation from the
catalysts still represents a limitation for large-scale applications.

Organic ionic polymers have recently become a new re-
search focus in the polymer and materials communities be-
cause of their potential for applications in numerous areas in-
cluding carbon precursors, catalysis, ion conductors, and smart
stabilizers.”® Impressively, it has also been suggested that the
ionic polymers seem to have intrinsic CO, philicity, because of
the strong dipole-quadrupole interactions between ionic moi-
eties and CO,.””' This property makes them interesting as they
are expected to provide a unique benefit in the fields involving
CO,. Furthermore, the introduction of porosity into these ma-
terials yields porous ionic polymers (PIPs), which in principle
can not only amplify the uptake capacity of CO, and accelerate
the interfacial mass and energy transport by virtue of the
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porous structures, but also overcome the issue of catalyst/
product separation as encountered for the soluble organic
ionic compounds."” Thereby, such type of materials is postu-
lated to be promising candidates to catalyze CO, transforma-
tions by taking advantage of the combination of CO, capture
and conversion (Scheme 1).

CO,

Scheme 1. lllustration of the application of PIPs in CO, capture and
conversion.

Bearing all those above in mind, herein, a family of organic
ionic polymers, featured with nanopores, large surface area,
and very high ionic density was synthesized by free-radical
polymerization of vinyl-functionalized quaternary phosphoni-
um salts. As a result of the combined contributions of highly
accessible active sites and the excellent CO, affinity of the re-
sultant PIPs, they demonstrate excellent activities in the cyclo-
addition of epoxides with atmospheric CO, at low temperature
in the absence of any solvent, co-catalyst, or other additives,
outperforming their corresponding soluble phospho-
nium salt analogues. Considering the improved per-
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Table 1. Molecular structures of vinyl-functionalized quaternary phospho-
nium salts and textural parameters of corresponding PIPs.
Monomer Polymer BET surface area Pore volume
[mz 971] [cm3 971]
z
X0 PIP-Me-| 402 0.24
P\
V@ \
(5
¥ Br. PIP-Et-Br 625 0.40
SO 7©\\\
(5
+rcl
\/@«"*@\\ PIP-Bn-Cl 758 0.59
N \

cial for the mass transfer during the reaction.” Corresponding-

ly, they exhibit excellent CO, affinity, allowing CO, uptake of
1.38, 147, and 1.52 mmolg™" at 298 K and 1.88, 2.01, and
2.23 mmolg™" at 273 K, respectively (Figure 1b and ¢), higher
than those reported for other PIP materials'? and about 20
times the values for the nonporous counterparts (Figure S2) as
well as about 40 times the values for the corresponding qua-
ternary phosphonium salt moieties obtained by the treatment
of triphenylphosphine and the corresponding alkyl halides (ho-
mogeneous quaternary phosphonium analogues, QPs, shown
in Figure 1d). In addition, an inferior CO, uptake is observed
for nonionic porous polymer (polydivinylbenzene) than that
for PIP-Bn-Cl, although they possess similar large surface areas
(Figure S3). These results suggest that because of the high po-

formance and diversity of the organic ionic com- 4001 o 151b
. .. . . ""ao 3 —0— PIP-Me-I
pounds, our work provides a promising direction for %, 300- g [y
the development of highly efficient materials for sus- 3 E 101 o ppana
Py 2
tainable conversion of CO,. % 2001 -
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=.100- ~
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PIPs were prepared by the free-radical solvothermal E 5] ~-rrm 50.04- :gg:‘;fcrl
polymerization of the vinyl-functionalized quaternary ~ ~ ] SesrREeCl o S
phosphonium salt monomers (Figure S1 in the Sup- g 1.0+ go.oz-
porting Information), which can be readily synthe- ;N 054 2 g
sized from tris(4-vinylphenyl)phosphine and the cor- © 8000
. . . 0.0 004
responding alkyl halide (Table 1), to obtain PI.P-M.e-X, ; = R A . - I R R
PIP-Et-X, and P-Bn-X (X=CI, Br, I). Ny-sorption iso- P/mm Hg P/mm Hg

therms collected at 77 K reveal that these polymers

have relatively high surface areas of 402, 625, and
758 m?*g~" for PIP-Me-l, PIP-Et-Br, and PIP-Bn-Cl, re-
spectively (Figure 1a), which should be very benefi-
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Figure 1. a) N,-sorption isotherms collected at 77 K, b) CO,-sorption isotherms collected
at 298 K, and ¢),d) CO,-sorption isotherms collected at 273 K. Soluble quaternary phos-
phonium salts of QP-Me-I, QP-Et-Br, and QP-Bn-Cl synthesized from triphenylphosphine
with iodomethane, bromoethane, and benzyl chloride, respectively.
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rosity and ionic character, there is a sound interaction between
the PIP frameworks and CO, molecules, which provides these
polymers with unique properties, particularly for the transfor-
mations involving CO,.

Evaluation of catalytic performance

Given the high density of catalytically active sites and their ca-
pability to adsorb a substantial amount of CO,, we set out to
evaluate their performance in the cycloaddition of epoxides
with CO, to form cyclic carbonates. Control experiments were
conducted for homogeneous quaternary phosphonium salts
and nonporous ionic polymer. In a typical experiment, the re-
actions were conducted in a Schlenk tube using epichlorohy-
drin (1.0 g, 10.9 mmol) purged with atmospheric CO, and the
catalyst (0.05 mmol, based upon the quaternary phosphonium
salt) under solvent-free conditions at 323 K. As shown in
Figure 2, all tested PIPs demonstrate higher catalytic activities
for cycloaddition of epichlorohydrin with CO, than those of
the corresponding QPs. In addition, as a representative catalyst
PIP-Bn-Cl exhibits higher activity than the nonporous polytri-
phenyl(4-vinylbenzyl)phosphonium chloride, affording chloro-
propene carbonate yields of 92.8 and 34.6%, respectively.
These observed catalytic activities could be attributed to the
following reasons: i) the integration of CO, philicity and porous
structures of these frameworks render the CO, molecules con-
centrated near the catalytic sites, thus promoting the cycload-
dition of epichlorohydrin and CO,; ii) the 3D nanochannels of
these PIPs allow the reactions not to be diffusion controlled.

The catalytic activities of the synthesized PIPs have the fol-
lowing order: PIP-Me-| <PIP-Et-Br < PIP-Bn-Cl. Given the great
differences in catalytic performance of these PIPs, the effect of
the halogen anions and quaternary phosphonium cations on
the catalytic activity was examined. Because of their ionic
nature, anion exchanges can be readily carried out on PIPs,
yielding PIP-Me-X, PIP-Et-X, and PIP-Bn-X (X=Cl, Br, 1), respec-
tively. Notably, the catalytic efficiency of PIPs with the same
cations decreased in the order CI~ >Br~ > 17, which is different
form the catalytic systems that involved metal species (such as
metal-organic framework (MOF)-based catalysts with the
assistance of organic ionic compounds), where the order is
Br > Cl” >1". These results can be explained as follows: in the
absence of the Lewis acid, nucleophilic attack of I~ or Br™ on
the epoxide was slower than that of CI™ because |~ and Br™ are
intrinsically less nucleophilic than CI~. On the other hand, the
catalytic efficiency of the PIPs bearing the same X~ anions de-
crease in the order: PIP-Bn™ >PIP-Et" >PIP-Me™, which is
likely a result of the less tight ion pairing between bulkier cat-
ions in PIP-Bn-X with X~ than those in PIP-Me-X and PIP-Et-X
with less bulkier cations, thus increasing their nucleophilicity.
As a consequence, the combined contributions of the high nu-
cleophilicity and easy availability of CI~ in the PIP-Bn-Cl catalyst
leads to its enhanced catalytic performance. These interpreta-
tions are in good agreement with mechanisms proposed previ-
ously, which suggest that the rate-determining step of this re-
action is the ring opening of the epoxide, which occurs
through the attack by anions.!"
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Figure 2. Yields of chloropropene carbonate from the cycloaddition of epi-
chlorohydrin and CO, catalyzed by a) PIPs with corresponding QPs and

b) PIP-Me-X, PIP-Et-X, and PIP-Bn-X (X=ClI, Br, and 1). Reaction conditions:
epichlorohydrin (1.0 g, 10.9 mmol), catalyst (0.05 mmol, based upon the
quaternary phosphonium salt), 323 K, CO, (ambient pressure), and 24 h.

Consequently, PIP-Bn-Cl was used as a representative sample
in further studies. Table 2 shows the PIP-Bn-Cl-catalyzed cyclo-
addition of CO, with epichlorohydrin under various tempera-
tures and CO, pressures. Unprecedentedly, CO, is converted ef-
ficiently by PIP-Bn-Cl under very mild conditions (i.e., ambient
conditions) as well as with very low catalyst dosage
(0.46 mol %), giving rise to 91.4% chloropropene carbonate
yield after 80 h. As far as we know, no report has appeared for
a heterogeneous catalyst to promote the cycloaddition of CO,
to epoxides under atmospheric CO, pressure and room tem-
perature without solvent, metal species, and the addition of an
external homogeneous co-catalyst. Heterogeneous catalysts
such as MOFs or metal-coordinated porous polymers are active
under ambient conditions only with the assistance of external
homogeneous co-catalysts. In general, the reaction rate in-
creases sharply in the temperature range 298-373 K. For exam-
ple, a full conversion can be reached within 3 h when the reac-
tion is performed at 373 K. In contrast, the pressure of CO, has
relatively little influence on the reaction. Only a slightly in-
creased epichlorohydrin conversion from 63.3 to 71.4% was
observed when the CO, pressure was increased from 0.1 to
1.0 MPa. However, further increase in CO, pressure from 1.0-
4.0 MPa does not provide fruitful results, which might be be-
cause of the strong affinity of PIP-Bn-Cl to CO, that guarantees
the presence of sufficient CO, molecules in the vicinity of the
catalytic sites.

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 2. Dependence on reaction conditions of the PIP-Bn-C-catalyzed
cycloaddition of epichlorohydrin.”
(e}
(0] Cat. o~ o
CI\/A =
Cl
Entry TIK] CO, pressure [MPa] t [h] Yields [%]
1 298 0.1 80 94.7
2 298 0.1 48 63.3
3 313 0.1 40 72.7
4 323 0.1 24 92.8
5 333 0.1 18 >99.0
6 373 0.1 3 >99.0
7 298 0.1 48 714
8 298 2 48 73.2
9 298 3 48 729
10 298 4 48 735
[a] Reaction conditions: epichlorohydrin (1.0 g, 10.9 mmol), catalyst
(25 mg, 0.05 mmol, based upon the quaternary phosphonium salt).

Recyclability and stability tests

Catalyst recyclability and long-term stability under harsh condi-
tions are essential features of any catalysts considered for use
in large-scale applications. As a solid catalyst, the PIP-Bn-Cl can
be recovered by filtration after the reaction and reused for the
next run. The yields of chloropropene carbonate for ten re-
peated runs are shown in Figure 3, and no considerable de-
crease in the yield is observed. These results confirm the excel-
lent stability and recyclability of the catalyst.

To further illustrate the robustness of the catalyst, long-term
catalytic tests were performed under high temperature (423 K)
and high pressure (2-3 MPa) using PIP-Bn-Cl (25 mg) and
a large amount of epichlorohydrin (1.0 mol, 92.5g) in
a 200 mL autoclave and by maintaining the pressure of the
system by adding CO,. The conversion of the reagent in-
creased steadily with increasing time. After reaction for 100 h,
a 97.1% chloropropene carbonate yield and a turnover
number (TON) value as high as 19420 were achieved, thus in-
dicating the stability of the catalyst. On the other hand, such
a high value of TON further suggests that the PIP-Bn-Cl has
broad applicability in industry for cycloaddition of CO, to cyclic
carbonates. After using for 100 h, the chemical structure of
PIP-Bn-Cl is well maintained and the surface area does not
change considerably (from 758 to 593 m?g™",) as revealed by IR
spectra and N,-sorption isotherms (Figures S4 and S5), respec-
tively, thus confirming the robustness of the catalyst.

Scope and limitation evaluation

Furthermore, we also studied the scope of the PIP-Bn-Cl cata-
lyst for the cycloaddition of various epoxides with atmospheric
CO, and found that it has a broad substrate scope (Table 3). All
tested epoxides can be converted into carbonates with excel-
lent yields. Moreover, despite its high steric hindrance and
low-reactivity (owing to the strong chemical bond caused by
the conjugation between the benzene ring and epoxy group),
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Figure 3. a) Recycling test of PIP-Bn-Cl catalyst in the cycloaddition of
epichlorohydrin and CO,. Reaction conditions: epichlorohydrin (1.0 g,

10.9 mmol), catalyst (25 mg, 0.05 mmol, based upon the quaternary phos-
phonium salt), 323 K, CO, (ambient pressure), and 24 h; b) yields of chloro-
propene carbonate versus time under harsh reaction conditions: epichloro-
hydrin (1.0 mol, 92.5 g), PIP-Bn-Cl (25 mg), 423 K, CO, (2-3 MPa).

styrene oxide can also be smoothly converted under relatively
low temperatures (Table 3, entries 5 and 6).

Conclusions

A family of robust, phosphonium-based porous ionic polymers
(PIPs) is developed as adsorbents of CO, and heterogeneous
catalysts for the cycloaddition of epoxides with atmospheric
CO, at low temperature (>100°C) even at room temperature.
Control experiments based on homogeneous catalysts of the
quaternary phosphonium salts and nonporous ionic polymer
reveal the enhancement achieved by the introduction of the
porous structure in the catalytic cycloaddition, which not only
amplifies the adsorption capacity of CO, but also facilitates the
mass transfer, thus leading to high activities. Because of the ex-
cellent stability, activity, and recyclability, the PIPs emerge as
efficient materials for capture and conversion of CO, and,
therefore, can have broad prospects for their practical applica-
tions in the chemical industry.

Experimental Section
Chemicals and materials

Solvents were purified according to standard laboratory methods.
THF was distilled over LiAlH,. 4-Bromostyrene was distilled over
CaH,. Other commercially available reagents were purchased in
high purity and used without further purification.

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 3. PIP-Bn-Cl-catalyzed cycloaddition reactions of epoxides with
atmospheric CO, to cyclic carbonates.”

hi
O Cat. o ©
R
R
Entry Epoxides Products T[°C] Yields [%]®
1
0
1 A oo 50 93.2
o
o A
2 A J"j 50 94.5
o
L oo 80 92.8
3 O
Z /\/O\)_/
o
4 A A 80 947
o0 oo .
\/\/o\)_/
0
A o/lko
5 ©/u ©)4 80 67.4
0
A o/lko
6 (j/u ©)4 100 87.6
o
2 A

o)
o [oe]
8 ©/ 2 : o 100 9.9

[a] Reaction conditions: epoxide (1.0 g), CO, (ambient pressure, PIP-Bn-Cl
(25 mg), and 24 h. [b] Yields were determined by GC. [c] 72 h. [d] 48 h.

Synthesis of methyltris(4-vinylphenyl)phosphonium iodide

lodomethane (0.85 g, 6 mmol) and tris-(4-vinylphenyl)-phosphine!”

(1.7 g, 5 mmol) were dissolved in acetone (10 mL), while stirring at
333 K under N, atmosphere for 48 h. After cooling to room tem-
perature, the solid was filtrated, washed with diethyl ether, and
dried under vacuum. The product was obtained as a white solid in
quantitative yield.

Synthesis of ethyltris(4-vinylphenyl)phosphonium bromide

Bromoethane (0.65 g, 6 mmol) and tris-(4-vinylphenyl)-phosphine
(1.7 g, 5 mmol) were dissolved in acetone (10 mL), while stirring at
333 K under N, atmosphere for 48 h. After the reaction, the mix-
ture was cooled to room temperature, followed by filtrating, wash-
ing with diethyl ether, and drying under vacuum. The product was
obtained as a white solid in quantitative yield.

Synthesis of (4-vinylbenzyl)-tris-(4-vinylphenyl)-phosphoni-
um chloride.

4-Vinylbenzyl chloride (0.91g, 6 mmol) and tris-(4-vinylphenyl)-
phosphine (1.7 g, 5 mmol) were dissolved in acetone (10 mL),
while stirring at 333 K under N, atmosphere for 48 h. After the re-
action, the mixture was cooled to room temperature, followed by

ChemSusChem 2017, 10, 1160 - 1165 www.chemsuschem.org
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filtrating, washing with diethyl ether, and drying under vacuum
overnight. The product was obtained as a white solid (2.2 g, 91 %).

Synthesis of PIPs

As a typical run, 1 g of vinyl-functionalized quaternary phosphoni-
um salt [methyltris(4-vinylphenyl)phosphonium iodide, ethyltris-
(4-vinylphenyl)phosphonium bromide, or (4-vinylbenzyl)-tris-(4-
vinylphenyl)phosphonium chloride] monomer was dissolved in
DMF (10 mL), followed by the addition of azobisisobutyronitrile
(AIBN, 25 mg). After stirring at room temperature for 3 h, the mix-
ture was transferred into an autoclave at 373 K for 24 h. After ex-
traction of DMF with ethanol and drying in vacuum, white solid
products were obtained and designated as PIP-Me-l, PIP-Et-Br, or
PIP-Bn-Cl, respectively.

Synthesis of PIPs with different anions

PIPs with different anions (X=1", CI~, and Br") can be readily
obtained by anion exchange with Nal, NaCl, and NaBr aqueous
solutions.

Catalytic tests

Typical procedure for the cycloaddition at ambient CO,
pressure

The reactions were carried out in a 25 mL Schlenk tube with a mag-
netic stirrer. As a typical run, the epoxide (1.0 g) and PIPs (25 mg)
were transferred into the reactor. After sealing and purging with
CO, using a balloon, the tube was placed in a preheated oil bath
and stirred for a desired time. After the reaction, the catalyst was
removedfrom the system by centrifugation and the product was
analyzed by gas chromatography (GC-1690 Kexiao Co. equipped
with a flame ionization detector and a HP-INNOWax capillary
column) using dodecane as internal standard.

Typical procedure for the cycloaddition reactions at high CO,
pressure

The reactions were carried out in a stainless steel reactor with
a magnetic stirrer. As a typical run, the epoxide (1.0 g) and PIPs
(25 mg) were transferred into the reactor. After sealing and purg-
ing with CO, to a desired pressure, the autoclave was placed in
a preheated oil bath and stirred for a desired time. After the reac-
tion, the reactor was cooled to below 273 K by using a cold etha-
nol bath and CO, was released and passed through a cold trap
with N,N-dimethylformamide as absorbent. After the catalyst was
as removed from the system by centrifugation, the product was
analyzed by GC using dodecane as internal standard.

Characterizations

N,-sorption isotherms at the temperature of liquid N, were mea-
sured using Micromeritics ASAP 2020 M and Tristar system. The
CO,-adsorption isotherms were measured at 298 and 273 K using
a water and ice water bath, respectively. The samples were out-
gassed for 10 h at 100°C before the measurements. Liquid NMR
spectra were recorded on a Bruker Avance-400 (400 MHz) spec-
trometer. Chemical shifts are expressed in ppm downfield from tet-
ramethylsilane (TMS) at 6 =0 ppm, and J values are given in Hz. IR
spectra were recorded on a Nicolet Impact 410 FTIR spectrometer.
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