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ABSTRACT: Noble gases, especially krypton (Kr) and xenon (Xe), are widely applied
in diverse fields. Developing new techniques and adsorbents to separate and purify Kr
and Xe is in high demand. Herein, we reported a bimetallic metal−organic framework
(MOF) (NKMOF-1-Ni) which possesses a narrow pore size (5.36 Å) and ultrahigh
stability (e.g., stable in water for 1.5 years). Gas sorption measurements revealed that
this MOF possessed much higher uptake for Xe than for Kr, Ar, or N2 at room
temperature in all pressure ranges. The calculation of adsorption isosteric heat and
Grand Canonical Monte Carlo simulation verified that NKMOF-1-Ni had a stronger
interaction with Xe than other tested gases. The results of ideal adsorbed solution theory
selectivity and simulated breakthrough further showed that NKMOF-1-Ni had an
outstanding separation performance of Xe/Kr, Xe/Ar, and Xe/N2. This study provides
important guidance for future research to synthesize ideal sorbents to separate noble
gases.

■ INTRODUCTION

Noble gases, including helium (He), neon (Ne), argon (Ar),
krypton (Kr), and xenon (Xe), originated from the atmosphere
and have low concentration therein.1 The concentration of Ar
(9340 ppmv) is much higher than that of He (5.2 ppmv), Kr
(1.14 ppmv), and Xe (0.087 ppmv).2,3 However, they all play
essential roles in our daily lives and industrial production
because of their stable physical and chemical properties. Noble
gases possess plenty of industrial uses, including commercial
lighting, as carrier gas, as insulation, and in imaging and
anesthetics.4 Among the noble gases, Kr and Xe have obtained
widespread attention due to their broad application in diverse
fields such as medical science and nuclear energy. Up to now,
the price of high-purity Xe and Kr is ∼$5000 per kilogram.5 At
present, the dominated technique to produce noble gases in
industry is cryogenic distillation, which is based on the
differences in boiling points of various gases (27 K for Ne, 87
K for Ar, 120 K for Kr, and 165 K for Xe).6,7 In this process, air
was liquefied first and then fractionally distillated in columns
with different temperatures to obtain various gases such as N2,
Ar, Kr, and Xe. Despite this, Kr and Xe of high purity cannot
be directly obtained but contain a 20/80 (v/v) mixture of Xe/
Kr and Ar contaminate.8,9 Meanwhile, this process is an
energy-intensive and costly process. Nowadays, separation of
Xe and Kr is still very challenging because of their similar
boiling points (Xe: 165 K, Kr: 120 K) and close kinetic
diameters (Kr: 3.7 Å, Xe: 4.1 Å).7 Physical adsorption is an
energy-saving technology which uses solid adsorbents to
adsorb guests and can be carried out at room temperature.

Activated carbon, silica gel, zeolite, and molecular sieves are
the common solid adsorbents which have been applied in gas
separation, such as the separation of CO2/N2 and Xe/Kr.10−12

However, they all have deficiencies, for instance, low selectivity
and low capacity. Thus, developing new adsorbents which can
surpass the traditional solid adsorbents is in high demand.
Metal−organic frameworks (MOFs) are a new class of

functional porous materials which have attracted increasing
attentions in the past two decades. MOFs consist of metal ion
centers or metal clusters linked with organic building blocks via
coordination bonds to produce diverse and customizable
structural frameworks. Compared with traditional porous
materials, MOFs have showed many advantages, such as
adjustable pore aperture, high surface areas, and customizable
structures. To date, MOFs have been applied in many fields,
such as catalysis,13−15 drug delivery,16,17 sensors,18 illumina-
tion,19 batteries,20 and gas storage21−24 and separation.25−29

Recently, several groups have carried out the separation and
purification of noble gases by MOFs. In 2006, Pastre et al. first
reported the separation of Xe and Kr by HKUST-1,30 and
further verified its selectivity by a binary gas mixture (Kr/Xe =
94/6) breakthrough at 40 bar and 328 K. In 2013, Li’s group
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reported a MOF named as Co3(HCOO)6 which can effectively
separate Xe from other noble gases.31 Along the same line,
Thallapally et al. reported a hybrid ultramicroporous frame-
work named as SIFSIX-3-Fe, which has both high selectivity of
Xe/Kr and high gas uptake.32 In terms of theoretical
calculation, Sikora and coworkers generated over 13 700
hypothetical MOFs using thermodynamic analysis and found
that the MOFs with pore size distributed 4.0−8.0 Å possessed
higher selectivity over Xe/Kr than the MOFs with large pore
size >10 Å.33 Although the aforementioned MOFs have been
applied for noble gas separation, they still suffer from some
issues such as low stability and low uptake that limit their
further applications. In this contribution, we reported a highly
stable ultramicroporous bimetallic MOF (NKMOF-1-Ni)
which showed high promise to separate noble gases (Xe, Kr,
Ar, and N2). This study provides important guidance for future
researchers on how to design porous sorbents to separate
noble gases.

■ EXPERIMENTAL SECTION

NKMOF-1-Ni was synthesized based on the literature
procedure with slight modification.34−37

Synthesis of Na[Ni(pdt)2·2H2O]. Pyrazine-2,3-dithiol
(pdt) (500 mg, 3.52 mmol) was added to 150 mL of
acetonitrile with stirring for 2 h; NaOH (422.4 mg, 10.56
mmol) was dissolved in 10 mL of deionized water and then
dropped into an acetonitrile solution with bubbling. After 2 h,
Ni(ClO4)2·6H2O (658 mg) was added to the mixed solution
and continued to bubble. After 3 h, 500 mg of I2 was added,
and the color of the solution changed from orange to green
immediately. After stirring for 3 h, the solution was removed
by vacuuming, and then 200 mL of acetone was added to
dissolve the solid, which was then filtered by diatomite. Ether
was added to precipitate solids.
Synthesis of NKMOF-1-Ni. Na[Ni(pdt)2]·2H2O (0.25 g,

0.62 mmol) was dissolved in acetonitrile (150 mL) and
bubbled with argon for 30 min. CuI (0.142 g, 0.744 mol) was
dissolved in acetonitrile (15 mL) and bubbled with argon for
30 min. Subsequently, CuI solution was slowly added into
Na[Ni(pdt)2]·2H2O solution with stirring and bubbling. After
6 h, dark red powders of NKMOF-1-Ni were obtained by
centrifugation and washed with acetonitrile five times. Before
further tests, NKMOF-1-Ni was stored in MeCN.

■ RESULTS AND DISCUSSION

NKMOF-1-Ni possesses a 3-dimentional structure with
ordered 1-dimentional (1D) channels extended along the c
direction. The 1D square channels is ∼5.36 Å (Cu···Cu
distance after deducting van der Waals radius) (Figure 1).
Powder X-ray diffraction (PXRD) pattern of the fresh sample
matched well with the calculated PXRD pattern, indicative of
the high purity of the as-synthesized sample (Figure S1). Water
and thermal stability were essential for materials in real
applications. According to the previously reported result,34

NKMOF-1-Ni exhibited excellent thermal stability and can still
maintain crystallinity after heating up to 240 °C. We further
comprehensively studied the chemical stability of NKMOF-1-
Ni. It was found that NKMOF-1-Ni can be stable in water for
more than 1.5 years at room temperature, verified by PXRD
(Figure S1) and BET surface area measurements. The BET
and Langmuir surface areas of NKMOF-1-Ni soaking in water
for 1.5 years were 365 and 545 m2/g, respectively, comparable

to those of the fresh sample (BET: 354 m2/g, Langmuir: 515
m2/g, shown in Figure S2). Meanwhile, we also tested the
moisture stability of NKMOF-1-Ni. It was evidenced by the
PXRD pattern (Figure S1) that NKMOF-1-Ni was stably
stored at 70% humidity for at least 6 months. Moreover, we
tested the stability of NKMOF-1-Ni in different solvents, and it
was stable in methanol, dimethyl sulfoxide, acetone, dichloro-
methane, and ethyl acetate for at least 1 month, as verified by
PXRD data (Figure S3). The narrow pores and excellent
stability endowed NKMOF-1-Ni great potential for separation
and purification of noble gases.
To explore the potential separation performance of

NKMOF-1-Ni for noble gas separation and purification, we
collected single-component adsorption isotherms of N2, Ar, Kr,
and Xe for NKMOF-1-Ni at 273 and 298 K, respectively
(Figure S4). NKMOF-1-Ni was found to adsorb 0.16 mmol/g
of N2, 0.39 mmol/g of Ar, 1.20 mmol/g of Kr, and 2.16 mmol/
g of Xe at 298 K and 1 bar (Figure 2b). Notably, the capacity
of Xe was almost two times higher than that of Kr. In addition,
we found NKMOF-1-Ni absorbed 0.25 mmol/g of N2, 0.84
mmol/g of Ar, 1.86 mmol/g of Kr, and 2.47 mmol/g of Xe at
273 K and 1 bar (Figure 2a). Furthermore, we compared the
adsorption capacity of each single component (N2, Ar, Kr, and
Xe) gas at low pressure (0.1 bar) and found the capacity of Xe,
Kr, Ar, and N2 were 0.98, 0.44, 0.08, and 0.03 mmol/g,
respectively.
The coverage-dependent isosteric heats of adsorption (Qst)

can quantitatively assess the binding affinity of adsorbents
toward different guest molecules. It was calculated based on
single-component gas adsorption curves of NKMOF-1-Ni at
273 and 298 K. The single-component adsorption curves were
fitted by Virial equation. Qst values were calculated according
to the Virial equation.38,39 (Figure S5) The zero-coverage Qst
value of NKMOF-1-Ni was estimated to be 34.2 kJ/mol for Xe,
which was higher than most reported MOFs, such as HKUST-
1 (26.9 kJ/mol),30 Ni-MOF-74 (22.0 kJ/mol),40 SBMOF-2
(26.4 kJ/mol),41 CROFOUR-2-Ni (30.5 kJ/mol),42 UiO-66
(25.0 kJ/mol),43 and Co3(HCOO)6 (28.0 kJ/mol).31 The
calculated Qst at zero coverage is 33.1 kJ/mol for Kr, 26.1 kJ/
mol for Ar, and 12.0 kJ/mol for N2, respectively. These results
demonstrated that NKMOF-1-Ni had obviously stronger
interaction with Xe than other gases.
Adsorption selectivity is a factor to evaluate the separation

performance of binary or multicomponent mixtures for an
adsorbent. We calculated the gas mixture selectivity of
NKMOF-1-Ni by using ideal adsorbed solution theory

Figure 1. (a) The building unit of NKMOF-1-Ni. (b) The 3D
structure of NKMOF-1-Ni with 1D channel along the c axis.
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(IAST) based on the single adsorption isotherms collected at
298 K and 1 bar. Before the selectivity calculation, we used the
dual-site Langmuir−Freundlich equation to fit the single
component adsorption isotherm curves for each gas. The

fitted parameters for each gas were displayed in Table S1. The
IAST selectivities for Xe/Kr (20:80), Xe/Ar (1:99), and Xe/
N2 (1:99) are displayed in Figure 2(d). The calculated
selectivity value for Xe/Kr (20/80) binary gas mixture was
∼5.2, which is higher than those MOFs reported in the
literature, such as IRMOF-1 (2.5−3),44 MOF-74-Ni (4),40,45

and HKUST-1 (2−3).46 The selectivity of Xe/Ar (1/99) was
41.3 at 298 K and 1 bar and was 60 at low pressure. Moreover,
the selectivity of Xe/N2 (1:99) was 136.7 which is higher than
those MOFs reported in the literature, such as HKUST-1
(52.35) and MOF-74-Ni (13.45).45

Theoretical simulation is a powerful tool which can unveil a
lot of useful information behind the phenomena. To
understand the interaction between noble gases and the
frameworks of NKMOF-1-Ni, the noble gas adsorption
property of NKMOF-1-Ni was studied by Grand Canonical
Monte Carlo (GCMC) simulations.47−50 The GCMC results
revealed that the simulated Xe and Kr uptakes were 2.28 and
1.12 mmol/g, respectively, at 298 K and 1 bar. The results
were close to the experimental results. A slice through the
calculated potential field demonstrated there were two
preferential adsorption regions in NKMOF-1-Ni (Figure 3),

the highest potential location was between the two open metal
sites, and the other site was between two pyrazine rings.
Therefore, the combination of open metal sites and conjugated
pyrazine rings endows NKMOF-1-Ni with a strong interaction
towards gas molecules.
We further investigated the gas mixture separation via

simulated breakthrough experiments. Herein, we used a
software associated with the 3P mixSorb Manager instrument
named 3P Simulation to simulate the breakthrough of Xe/Kr
(20/80), Xe/Ar (1/99), and Xe/N2 (1/99).51,52 Before
monitoring the breakthrough curves, we fitted the single-
component adsorption curves by the equation named DS
langmuirSIPS (the fitted parameters are displayed in Table S4)
and then chose the ISAT method with DSLAISIPS model to
simulate the breakthrough curves. The coefficients involved in

Figure 2. Single-component gas (N2, Ar, Kr, and Xe) adsorption
isotherms and selectivity of NKMOF-1-Ni. (a) The adsorption
isotherms of NKMOF-1-Ni at 273 K. (b) The adsorption isotherms
of NKMOF-1-Ni at 298 K. (c) Qst curves of adsorption of NKMOF-
1-Ni for Xe, Kr, Ar, and N2. (d) The IAST selectivity of Xe/Kr (20/
80), Xe/Ar (1/99), and Xe/N2 (1/99).

Figure 3. A slice through the calculated potential field for Xe (top)
and Kr (bottom) in NKMOF-1-Ni. S: yellow, C: gray, N: blue, Cu:
orange, H: white, Ni: navy.
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the simulation are shown in Tables S5−S7. The results

exhibited that Xe was preferentially adsorbed in the all binary

gas mixtures (Figure 4a−c), and then Ar, Kr, and N2 were

eluted subsequently. Furthermore, we simulated the ternary

gas mixture (Xe/Kr/Ar = 1:1:1) breakthrough curve. The
related parameters are displayed in Table S8. As shown in
Figure 4d, Ar was eluted first, followed by Kr and finally Xe.

■ CONCLUSION
In conclusion, we reported a bimetallic MOF (NKMOF-1-Ni)
which possessed narrow one-dimensional square channels and
open metal sites benefiting the interaction with guest
molecules. Single-component gas adsorption data and Qst
calculation revealed that NKMOF-1-Ni has a stronger
interaction with Xe than with Kr, Ar, or N2. GCMC simulation
revealed that the binding affinity can be ascribed to the two
sites between gas molecules and frameworks. IAST selectivity
calculation indicated that NKMOF-1-Ni has good separation
performance on Xe/Kr, Xe/Ar, and Xe/N2, which were further
proved by simulated breakthrough curves of binary mixtures
(Xe/Kr, Xe/Ar, and Xe/N2) and a ternary mixture (Xe/Kr/
Ar). Therefore, this work can guide future researchers to
design ideal MOFs for noble gas separation and purification.
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(52) Möller, A.; Eschrich, R.; Reichenbach, C.; Guderian, J.; Lange,
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