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ABSTRACT: Enzyme immobilization has been demonstrated to be a
favorable protocol to promote industrialization of biomacromolecules.
Despite tremendous efforts to develop new strategies and materials to
realize this process, maintaining enzyme activity is still a formidable
challenge. Herein we created a sacrificial templating method, using metal−
organic frameworks (MOFs) as sacrificial templates to construct hollow
covalent organic framework (COF) capsules for enzyme encapsulation.
This strategy can provide a capacious microenvironment to unleash enzyme
molecules. The improved conformational freedom of enzymes, enhanced
mass transfer, and protective effect against the external environment
ultimately boosted the enzymatic activities. We also found that this strategy
possesses high versatility that is suitable for diverse biomacromolecules,
MOF templates, and COF capsules. Moreover, the dimensions, pore sizes,
and shell thickness of COF capsules can be conveniently tuned, allowing for
customizing bioreactors for specific functions. For example, coencapsulation of different enzymes with synergistic functions were
successfully demonstrated using this bioreactor platform. This study not only opens up a new avenue to overcome the present
limitations of enzymatic immobilization in porous matrixes but also provides new opportunities for construction of biomicrodevices
or artificial organelles based on crystalline porous materials.

■ INTRODUCTION

As natural catalysts, enzymes possess fascinating characteristics,
such as high efficiency and regio- and stereoselectivity, allowing
for continual advances in biotechnological applications.1,2

However, the intrinsically fragile nature of enzymes greatly
impedes their industrialization. Enzyme immobilization has
become a favorable strategy with increased stability and
reusability, easy operation, energy conservation, and continu-
ous-flow production, prompting the application of en-
zymes.3−11 Despite these merits, most confined enzymatic
systems still confront great challenges. For instance, tightly
packed enzymes within host materials typically lack conforma-
tional freedom that may greatly affect molecular recogni-
tion.12,13 Mass transfer of substrates or products can also be a
limiting factor, and thus internally adsorbed enzymes may
display substantially reduced activity.14,15 Moreover, traditional
incorporation methods such as adsorption often suffer from
low loading or high leaching due to weak interaction or pore
size mismatching.16 Exploration of new platforms to overcome
these challenges for optimal enzyme performance in confined
space is, therefore, in urgent demand.
Compartmentalization of biomacromolecules is a common

phenomenon in living systems.17,18 The eukaryotic cell is a
prototypical example whereby the unique biochemical micro-

environment allows the spatial control of various functions.
Such enclosed units confer physical protection against external
disturbance, while maintaining a certain degree of freedom for
the internal contents.19,20 Inspired by nature, the design and
construction of biomimetic “smart capsules” can be a
promising approach to overcome the challenges of confined
enzymatic systems.21−23 Organic polymer and inorganic
nanoparticles are materials commonly used to prepare capsules
through various approaches.18,24,25 However, they may suffer
from irregular structure or lack of chemical functionality.26,27

Covalent organic frameworks (COFs) are an emerging class of
crystalline porous materials with high and well-defined
porosity, high stability, and readily engineered functionality,
allowing them to be excellent hosts for enzyme encapsula-
tion.28−31 However, the harsh synthetic conditions required in
the fabrication of COFs make it impractical to directly make
COF capsules encapsulating biomacromolecules through a
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“one-pot” strategy.32−34 The sister material of COFs, metal−
organic frameworks (MOFs), can in situ encapsulate
biomacromolecules to form biomacromolecule@MOF (@ =
encapsulating) with high loading and good protection.35−38

However, this often results in a penalty to lose the
conformational freedom of enzymes, leading to a detrimental
effect on enzyme activity. Many reports including our recently
work have proved that biomacromolecule@MOF can be easily
digested to release biomacromolecules without losing their
bioactivities which render MOFs as perfect sacrificial templates
to make COF capsules.37 Combining the benefits of both
COFs and MOFs to form “smart capsules” may open up new
opportunities to greatly enhance the performance of confined
enzymes: (i) the MOF encapsulation can protect enzymes
from harsh synthetic conditions, such as those amenable to
COF formation, allowing for COFs to directly coat enzyme@
MOF particles; (ii) the high porosity of COF shells then allows
for subsequent digestion of MOF cores while facilitating mass
transfer of substrates, resulting in active, conformationally
unhindered enzymes within a protective COF capsule.
Herein we created a versatile approach to fabricate

biomimetic “smart COF capsules” for the encapsulation of
active biomacromolecules. Biomacromolecules are first encap-
sulated within digestible MOFs via in situ encapsulation to
form biomacromolecules@MOF which can protect biomacro-
molecules and act as templates for the growth of
biomacromolecule@MOF@COF core−shell structures. Fi-
nally, the MOF core was etched away to liberate the
biomacromolecules within the hollow COF capsule (Scheme
1). Such a commodious microenvironment in the formed

biomacromolecule@COF offers protective effects while
maintaining the conformational freedom of biomacromolecules
and facilitating the mass transfer of substrates/products, which
is essential for the high activity or synergistic effect of different
enzymes. This study opens up a new avenue to overcome the
present limitations of enzymatic immobilization in porous
matrixes.

■ RESULTS AND DISCUSSION
Materials Preparation and Characterizations. A

supporting matrix is required for COF capsule formation to
protect enzymes against harsh synthetic conditions and to act
as a template. ZIF-90 has been previously shown to efficiently
load various biologically active macromolecules (e.g., enzymes)
and protect them against harsh conditions while also being
feasibly digested under mildly acidic conditions.35−37 Thus,
ZIF-90 is a perfect candidate to demonstrate the concept due
to the presence of unreacted aldehyde groups in the ligand 2-
imidazolecarbaldehyde (ICA), which could be anticipated in
the amine−aldehyde condensation reaction involved in a
subsequent COF formation and therefore allows the MOF
particles as templates in the formation of COF shells (Figure
1). To maintain the activity of biomacromolecules during the

synthesis process, an acid-stable COF that can be synthesized
under mild conditions is then required for the construction of
capsules, for which COF-42 was chosen.39,40 COF-42 was
synthesized via the room temperature condensation of 1,3,5-
t r i f o rmy l b e n z e n e (TB ) a n d 2 , 5 - b i s ( e t h o x y ) -
terephthalohydrazide (BETH) under acetic acid catalysis.
However, because protic acids could decompose the
enzyme@MOF complexes, a MOF-compatible catalyst, Sc-
(OTf)3,

41 was used instead of acetic acid. Various structural
analogues of the BETH monomer were screened to find one
that produced a crystalline COF-42 product (Table S1, Figures
S1 and S2). It was found that only 2,5-bis(butenyloxy)-
terephthalohydrazide (BBTH) succeeded to afford a crystalline
COF-42 analogue (named as COF-42-B) which was stable
under acid conditions (e.g., pH = 5, phosphate buffer (PB)
solution, 50 mM) (Figures S3 and S4).
To verify the construction strategy of COF capsules, BSA

(bovine serum albumin) was chosen as a model biomacromo-
lecule on the basis of its low cost and high solubility. BSA@
ZIF-90 was first prepared via the in situ encapsulation method
according to the literature.36 The encapsulation efficiency of
BSA was measured to be as high as 99%, using a standard
Bradford Assay, and the loading percentage was calculated to
be 0.22 g BSA per gram of ZIF-90 (Figure S5). Subsequently,
the as-prepared BSA@ZIF-90 was mixed with TB, BBTH, and
Sc(OTf)3 in 1,4-dioxane/mesitylene (3:1 v/v) for 30 min.
PXRD patterns and TEM images showed a combination of two
crystalline phases (i.e., ZIF-90 and COF-42-B) (Figures 2 and
S6), indicating the existence of BSA@ZIF-90@COF-42-B. FT-
IR results further verified the successful encapsulation of BSA
(Figure S7). Our previous result has demonstrated that ZIF-90
can be digested in aqueous solution with pH < 7.37 We then

Scheme 1. Stepwise Approach To Construct
Biomacromolecule@capsule

Figure 1. Synthetic route to biomacromolecule@COF capsules. (a)
Immobilizing biomacromolecules in ZIF-90 via an in situ
encapsulation method. (b) A one-pot reaction of ZIF-90 with COF
monomers. (c) Core−shell structure of biomacromolecule@ZIF-90@
COF-42-B (middle), structure of COF-42-B (left), a TEM image of
the core−shell structure (right). (d) Capsule structure of
biomacromolecule@COF-42-B (middle), EDS carbon distribution
(left) and a TEM image (right) of biomacromolecule@COF-42-B
capsule.
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exposed the as-prepared BSA@ZIF-90@COF-42-B to a PB
solution (pH = 5, 50 mM). The progress of the digesting
reaction was monitored by TEM, which showed a clear
transformation from the core−shell structure to a hollow
capsule within 1 h. Tracking characteristic PXRD peaks of ZIF-
90 afforded a result consistent with TEM data (Figures S8 and
S9). Energy-dispersive spectrometer (EDS) element mapping
further demonstrated the successful construction of COF-42-B
capsules (Figure 1d). Porosity of these materials was found to
be retained during the synthetic procedure (Figure S10). N2
sorption data collected at 77 K revealed the Langmuir surface
areas of 1390 m2/g, 610 m2/g, 436 m2/g, and 835 m2/g, BET
surface areas of 723 m2/g, 367 m2/g, 235 m2/g, and 530 m2/g,
pore size distribution centered around 0.9, 1.8, 1.2, and 1.8 nm
for BSA@ZIF-90, COF-42-B, BSA@ZIF-90@COF-42-B, and
BSA@COF-42-B, respectively. Moreover, it was found that the
thickness of the COF-42-B shell could be readily adjusted by
altering the amount of added BSA@ZIF-90. Upon increasing
the amount of BSA@ZIF-90, the PXRD reflection peaks
assigned to ZIF-90 exhibited increased intensity relative to the
intensity of the COF-42-B peaks (Figure S11), and TEM
images showed the COF shell varying from 130 to 15 nm
(Figure 2b). A control experiment was further performed to
test if BSA can be directly incorporated into COF-42-B via the
traditional pore adsorption method. The attempt failed
because the channel size of COF-42-B was much smaller
than the molecule size of BSA (Figure S12).

Exploration of the Generality of Capsule Fabrication
Strategy. To explore the generality of this synthetic strategy,
we examined the use of ZPF-2 (ZPF = zeolitic pyrimidine
framework) as the sacrificial template, instead of ZIF-90. ZPF-
2 with a sod topology was synthesized from Zn(NO3)2·6H2O
and 2-hydroxy-5-fluoropyrimidine (Figure S13) in aqueous
solution at room temperature.42 Herein, for the first time, we
demonstrated that ZPF-2 could efficiently incorporate
biomacromolecules via in situ encapsulation method. As
revealed by TEM, PXRD, and FT-IR (Figures S14−S16),
ZPF-2 can efficiently encapsulate BSA and serve as a sacrificial
template to yield hollow BSA@COF-42-B capsules. Addition-
ally, we found that the digesting rate of ZPF-2 was faster than
that of ZIF-90 and that the MOF cores were completely
removed in 10 min (Figure S17). Moreover, we found that
ZIF-8 could also be applied to fabricate COF capsules via an
approach similar to that for ZIF-90 and ZPF-2 (Figures S18−
S20). However, only a relatively small amount of ZIF-8 could
be incorporated within COF-42-B because increased amounts
of ZIF-8 inhibited the formation of COF-42-B. We also
explored whether other COF materials could be used to make
COF capsules. A hollow COF capsule containing BSA was
successfully fabricated with COF-43-B (Figures S21 and
S22).39 This stepwise strategy has, therefore, proven to be an
adaptable method to fabricate biomacromolecule-containing
hollow COF capsules that could foreseeably be modified for
use in highly specific applications.

Biocatalysis Application of COF Capsules. On the basis
of the successful encapsulation of BSA in COF capsules, we
further explored whether enzymes can be trapped within COF
capsules. Catalase (CAT) is a well-known multimeric protein
with four subunits, which can catalyze the breakdown of
hydrogen peroxide (H2O2) to generate O2 and H2O,
protecting cells from the oxidative damage caused by hydrogen
peroxide.43 To immobilize CAT within COF capsules, ZPF-2
was selected as the model sacrificial MOF. EDS mapping was
performed to confirm the successful encapsulation of CAT
within the capsules. As shown in Figure 3, Fe, the characteristic
element present in CAT, was uniformly dispersed in all
samples, indicative of the successful encapsulation of CAT.
Additionally, confocal images further verified the uniform

Figure 2. Characterizations of BSA@COF-42-B capsule. (a) PXRD
patterns of products in different synthesis stages. BSA@ZIF-90 (blue),
BSA@ZIF-90@COF-42-B (purple), BSA@COF-42-B (green), calcu-
lated pattern of ZIF-90 (black), and COF-42-B (red). (b) TEM
images showing BSA@ZIF-90@COF-42-B precursors (upper) and
BSA@COF-42-B capsules (below) with different shell thicknesses
tuned via adding different amounts of BSA@ZIF-90 (from left to
right, 6.0 mg, 9.0 mg, 12.0 mg, 15.0 mg, and 18.0 mg). Scale bar: 100
nm.

Figure 3. Bright-field images (left) and EDS elemental mapping
(right) of Fe, Zn, and C for (a) CAT@ZPF-2, (b) CAT@ZPF-2@
COF-42-B, and (c) CAT@COF-42-B.
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dispersion of CAT in all samples (Figure S23), and circular
dichroism (CD) and UV−vis spectra confirmed that the
structure of CAT was retained during this synthesis process
(Figure S24).
Factors such as particle size and capsule shell thickness were

also investigated to optimize the catalytic activity of this novel
enzyme-incorporated system. A series of CAT-loaded ZPF-2
crystals with particle sizes ranging from 100 to 8000 nm were
synthesized (Figure S25). TEM images were used to confirm
particle size uniformity for each sample (Figure S26a).
Catalytic activity toward H2O2 was evaluated via the FOX
method (Figures S27 and S28). With the same amount of
enzymes, CAT@ZPF-2 achieved the highest Kobs of 0.0473 s

−1

with a particle size of ∼1500 nm. COF capsule shell thickness
was also tuned by varying the amount of added CAT@ZPF-2
core (with particle size of ∼1500 nm). The results reveal that
the activity of enzyme@COF-42-B capsules obeyed a Gaussian
distribution when shell thickness was modified (Figure S29),
and the best performance was achieved with a shell thickness
of ∼60 nm (Kobs = 0.0743 s−1) (the loading capabilities were
1.66 g/g). Generally, the thicker the capsule shell, the higher
the mass transfer resistance. Besides thickness, capsule size of
COF-42-B also plays a crucial role in the activity of
encapsulated enzymes. Thereafter, we prepared a series of
COF capsules in the range of 350−1500 nm, with a capsule
thickness of ∼60 nm (Figure S26b−g) and found that capsules
of ∼1500 nm exhibited the best performance (Figure S30).
Thus, optimized COF capsules of ∼1500 nm size and ∼60 nm
thickness were used for further study.
The biocatalytic assay revealed that CAT@ZPF-2@COF-

42-B before MOF etching presented enzyme activity 49%
lower than that of CAT@ZPF-2, which should be ascribed to
the high mass transfer resistance in CAT@ZPF-2@COF-42-B.
After etching treatment, the generated CAT@COF-42-B
capsule demonstrated a dramatic 58% improvement of activity
compared to CAT@ZPF-2, which could be 210% when
compared to CAT@ZPF-2@COF-42-B (Figure 4a). Negli-

gible leaching of CAT was detected during the etching process
(Figure S31). A further comparison of the kinetics of CAT@
ZPF-2 and CAT@COF-42-B revealed that their Vmax and KM
were 2.73 μM/s and 0.0625 mM, and 3.98 μM/s and 0.0531
mM, respectively (Figure S32). Although their activities are
lower than free CAT (Figure S33), the results show
significantly boosted biocatalytic activity for CAT@COF-42-
B capsule structure after the removal of MOFs, indicating that
unleashing CAT molecules from the tightly packed MOF
composite to the commodious microenvironment of COF
capsules is beneficial for enzymatic performance. Additionally,
we also investigated the CAT-loaded COF-43-B capsules
which showed a trend similar to that for COF-42-B (Figure
S34). After optimization, the activity of CAT@COF-43-B
exceeded CAT@COF-42-B and showed an increase up to 81%
compared with that of CAT@ZPF-2 (Figure 4b) (loading
capabilities were 1.49 g/g). This result is probably due to the
larger pore size of COF-43-B (3.2 nm) compared with COF-
42-B (1.9 nm) (Figure S35) that facilitate the mass transport
of substrates and products. These results indicate that the
synthetic strategy can be applied as a versatile and tunable
approach for on-demand preparation of a highly efficient
bioreactor based on COF capsules.

Exploration of Protection Effect and Reusability of
COF Capsules. The protection effect of the formed COF
capsules was examined under various perturbation conditions,
such as acid, proteases, acetone, and high temperature (Figure
4c). CAT@COF-42-B prepared via CAT@ZPF-2 was selected
as a representative. First, we assessed its acid tolerance in
disodium hydrogen phosphate−citric acid buffer (100 mM, pH
= 4) for 30 min. CAT@COF-42-B was seen to retain 85% of
its original activity while free CAT retained only 35%, and
CAT@ZPF-2 lost almost all activity (>99%) due to the
leaching of CAT that resulted from dissolution of ZPF-2 under
the acidic condition (Figure S36a). COF-42-B was shown to
protect CAT with 95% of original activity retained after
exposure to acetone for 60 min. In contrast, free CAT retained
only 25% of activity. A similar result was observed after
exposure to protease trypsin (6 mg/mL) for 60 min: CAT@
COF-42-B retained ∼100% of its activity, while free CAT
retained only 25% of activity. Next, the influence of heating
was evaluated. After treatment under 60 °C for 10 min, free
CAT and CAT@ZPF-2 retained only 20% and 50% of original
activity, respectively, while CAT@COF-42-B retained 88% of
original enzymatic activity. These results revealed that CAT@
COF-42-B capsules demonstrated a superior protective effect
that surpassed that of its counterparts such as free CAT and
CAT@ZPF-2. Furthermore, we investigated the catalytic
durability and stability of CAT@COF-42-B, which is an
important criterion for heterogeneous biocatalysts. CAT@
COF-42-B could be readily recovered without significant loss
of activity for at least 10 cycles (Figure 4d), and negligible
leakage was detected during recycling experiments (Figure
S36b). In comparison, traditional porous materials such as
SBA-15 and active carbon were used to immobilize CAT via
the conventional adsorption method. Their loading capabilities
were demonstrated to be 0.21 g/g, and 0.09 g/g, respectively
(Figures S37 and S38). The formed CAT composites exhibited
much lower enzyme loading or activity compared with the
CAT@COF capsule (∼1.6 g/g, Figure S39) and exhibited no
recyclability (Figure S40).

Cascade Reactions Conducted in COF Capsule
Systems. In practical applications, two or more enzymes are

Figure 4. Biological activity of CAT@COF capsules. (a) Kinetics of
degradation of H2O2 for CAT@ZPF-2 (black), CAT@ZPF-2@COF-
42-B (blue), and CAT@COF-42-B (red). (b) Kinetics of degradation
of H2O2 for CAT@ZPF-2 (black), CAT@ZPF-2@COF-43-B (blue),
and CAT@ COF-43-B (red). (c) Activity percentage of CAT, CAT@
ZPF-2, and CAT@COF-42-B after treatment under various harsh
conditions. (d) Recycling experiments of CAT@COF-42-B.
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often required to cooperate with each other for advanced
functions.44 Fabricating multienzyme architectures has gar-
nered increasing attention with great potential in the field of
biocatalysis and advanced microdevices, such as “artificial
organelles”.27,45,46 For example, GOx can spontaneously
oxidize glucose into gluconic acid, meanwhile producing
H2O2 which can serve as a substrate of CAT. Combining
these two enzymes represents a model cascade reaction of a
biologically relevant system.47 To prove the concept of cascade
reactions in COF capsules, GOx was first encapsulated in
COF-42-B capsules such as CAT. We found that GOx@COF-
42-B using ZPF-2 as a sacrificial template exhibited an
improved activity (∼170%) compared to GOx@ZPF-2 (Figure
5a). We coencapsulated GOx and CAT into COF-42-B and

examined their cascade reaction effect. The cascade catalytic
efficiency was evaluated by the detection of glucose
consumption using the 3,5-dinitrosalicylic acid (DNS) method
(Figure S41).48 Compared to GOx@ZPF-2, GOx and CAT@
ZPF-2 exhibited a much higher glucose consumption rate
attributed to the participation of CAT. As shown in Figure 5b,
GOx and CAT@COF-42-B composite produced a 130%
consumption rate of glucose compared to its counterpart
(GOx and CAT@ZPF-2). These results demonstrated that the
synergistic effect between the two enzymes was significantly
enhanced after being unleashed from ZPF-2 to the
commodious COF capsule. To further prove the concept of
cascade reactions in the COF capsule, another multienzyme
bioreactor based on GOx and Hemin@COF-42-B was
evaluated spectroscopically using 3,3′,5,5′-tetramethylbenzi-
dine (TMB) and glucose as substrates, accompanied by a

colorimetric change detectable at 650 nm (Figure 5c). The
results revealed that GOx and Hemin@COF-42-B showed an
enhanced activity of 180% compared to its counterpart (GOx
and Hemin@ZPF-2) and further validated that the COF
capsule can provide freedom to multiple enzymes for better
cascade performance, which implies potential applications in
the fabrication of bioreactors or advance microdevices.

■ CONCLUSION
In summary, we created a facile three-step approach to
fabricate novel COF capsules to encapsulate various
biomacromolecules which cannot be easily incorporated by
COFs via traditional approaches (i.e., adsorption method).
First, biomacromolecules are first encapsulated within
digestible MOFs via in situ encapsulation to form biomacro-
molecule@MOF systems. This composite can further act as
templates for the growth of biomacromolecule@MOF@COF
core−shell structures. Finally, the MOF cores were etched
away to unleash the tied biomacromolecules within the hollow
COF capsule. This facile, scalable, and effective strategy
afforded high-performance COF bioreactors, which can
maintain enzyme conformational freedom, stabilize the
enzyme, and meanwhile allow effective diffusion of the
substrates and products. The COF capsules can provide
capacious internal environments for the optimal performance
of the encapsulated biomacromolecules with good protection
effect against external perturbations. The encapsulated
enzymes in COF capsules exhibited excellent reusability
which surpassed that of traditional porous materials such as
SBA-15. In addition, this synthetic platform exhibits high
versatility and tunability: different sacrificial MOF templates
(e.g., ZIF-90, ZIF-8, and ZPF-2) and COF shells (COF-42-B
and COF-43-B) as well as various enzymes (e.g., CAT, GOx)
were used in this study; various factors such as the COF shell
thickness and pore size could be fine-tuned to optimize the
performance of the bioreactors. We also demonstrated that
multiple enzymes could be easily coencapsulated within one
COF capsule using this synthetic strategy and act as advanced
bioreactors capable of efficient cascade reactions. Such diverse
advances may inform the further understanding of enzyme
behavior in both in vivo and in vitro systems and expand the
possibilities for the construction of microdevices, artificial
organelles, and even artificial cells.
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