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ABSTRACT: Albeit harnessing secondary sphere interactions to exert control over the
reaction outcomes has primarily been applied to enzymatic and organometallic catalysis,
there are seldom any studies that introduce outer-sphere modifiers into organocatalysts.
This is even less in the corresponding heterogeneous catalytic system. In this contribution,
we experimentally and computationally investigate the role of secondary effects in the
reactivity of bromide anions toward CO2 transformations. Six pyridinium cationic porous
frameworks have been synthesized and fully characterized. Structure−activity relationships
and kinetics show that the type and the location of the substituents on the cationic
framework have a significant impact on the nucleophilic reactivity of their bromide counter
anion. Specifically, the attachment of amine substituent to the ortho position relative to a
pyridinium motif produces a remarkably efficient catalyst for CO2 transformation, by a
factor of six times greater in comparison to the pristine pyridinium-based polymer. The
hydrogen-bond-interaction-promoted reagent activation and enhanced delocalization ability
of bromide counter anion are believed to be the key to driving the reaction toward CO2 utilization. These observations, therefore,
champion the leverage of secondary interaction for optimizing the reactivity of organocatalysts.
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■ INTRODUCTION

The secondary sphere refers to any moiety in the molecular
microenvironment that is not an integral part of a primary
functional site, yet are located close to it and are involved in its
mechanism of action through noncovalent or dynamic
interactions.1−4 The strategic modification of the secondary
sphere can lead to marked increases in the performance of an
active site.5−11 Well explored by enzymes, this principle has
been subsequently utilized in a wide range of metal-mediated
processes, whereby bioinspired design elements such as distal
hydrogen-bond donors, electrostatic forces, and hydrophobic
binding cavities have been incorporated into the catalyst
design.12−16 Despite the flourishing research, only a handful of
reports have explored the association of control over the
reactivity of organocatalysts by introducing secondary sphere
modifiers, and this is even less in the field of heterogeneous
organocatalysis.17

With interest in developing catalytic systems for CO2
transformations, we sought to modify a known organocatalyst,
pyridinium salt (an ionic compound with nucleophilic halide
counter anions), due to its modularity and wide applications in
CO2 transformations.18 The key elements to be optimized are
increasing the reactivity of the active species and activating the
reagent, which allows the reaction to proceed under mild
conditions. To put these considerations into specific examples,
a pyridinium salt was decorated with a library of substitute

groups that were employed as building blocks for the
construction of cationic porous frameworks. Given the
mobility of counter anions, the whole cationic framework
can thus be considered as a secondary modifier of the counter
anions, through which the reactivity of counter anions could be
tuned, reminiscent of that seen in the enzyme. The use of
porous polymers as a platform is appealing due to the
designability and high internal surface areas, which promote a
wide range of applications.19−29 Such modularity allows their
compositions to be fine-tuned, thus enabling a rigorous
comparison to establish correlations between compositions
and the performance of the resulting materials. We postulated
that altering the substituted group and its relative position
toward the pyridinium motif on the cationic framework would
systematically tune the reaction environment of the counter
halide anions, and this modification, albeit indirect, would be
manifested in the subsequent reactions. Candidate function-
alities with various electron-donating/-withdrawing strengths
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and hydrogen-bond donor/acceptor were selected. We then
evaluated the consequences in terms of reactivity in CO2
fixation for the subsequent polymeric pyridinium salts. We
found that their activities in the CO2 transformations are
altered such that the incorporated secondary sphere modifiers
accomplish their tuning not only by indirect electronic
communication with the catalytically active species but also
by participating in the reagent activation. The performance can
be further improved by alternating the relative position of
these catalytic relevant elements, as a result of boosted
cooperation. In spite of the specifics, our results point to an
appealing approach for improving the performance of organo-
catalytic systems and associated porous catalysts (Figure 1).

■ RESULTS AND DISCUSSION
Physicochemical Characterization. To investigate

whether the reactivity of halide anions could be tuned by
tailoring the secondary sphere modifier of the cationic
framework, functionalities of −NH2, −NHCOMe, −N(Me)2,
−H, and −Cl were incorporated into a pyridinium motif. To
construct these moieties into porous frameworks for easy
separation and ready recycling, we installed vinyl groups onto
the corresponding functionalized pyridine compounds. To
achieve the target polymers, the synthesized monomers and
free-radical initiator azobisisobutyronitrile (AIBN) were
dissolved in dimethylformamide (DMF). After 24 h of heating
at 100 °C, the resulting solids were collected after simple
acetone wash and directly subjected for quaternarization with
methyl iodide (CH3I), followed by ion exchange with NaBr
aqueous solution.
The solid-state 13C NMR spectra confirm the transformation

from the functionalized pyridine monomers into the respective
polymers. This is clearly evident from the emergence of an
intense peak attributable to polymerized vinyl groups at around
35.0 ppm, with the concomitant disappearance of resonance of
vinyl groups within the range of 110.0−120.0 ppm (Figures
S1−S6).30 The appearance of a peak at around 45.0 ppm
associated with the methyl group from CH3I verified the
occurrence of the quaternization reaction between the pyridine
moiety on these polymers and CH3I, yielding polymeric

quaternary ammonium salts (PQAs). The strong signals of
iodine species in the X-ray photoelectron spectra (XPS) of the
resulting PQAs at around 629.0 and 617.5 eV for I 3d5/2 and I
3d7/2, respectively, provided additional proof of the success of
this transformation (Figures S7−S12). The full accessibility of
the halide anions within these materials is supported by a
complete anion-exchange process between I− and Br− with the
disappearance of I− signal, as indicated by the XPS analysis.
The amount of Br− ions in the resulting frameworks was
quantified by the elemental analysis, revealing that greater than
95% of the pyridine moieties were grafted with the methyl
group in all of the synthesized materials. To determine the
porosity of the resulting polymeric pyridinium-based materials,
N2 sorption isotherms were collected at 77 K, which showed
that they processed moderate to high surface areas within the
range of 223−477 m2 g−1 (see summary in Table 1 and Figures
S1−S6).

Catalytic Performance Investigation. With these
materials in hand, we proceed to explore their utility in CO2
transformations. CO2 has the potential to be uniquely highly
economical as a C1 feedstock due to it being abundant and
renewable; however, its inherent thermodynamic stability and
kinetic inertness make chemical CO2 fixation challenging.31−36

Any efficient reactions for CO2 fixation are of practical value
and would have positive consequences on carbon management.
Among the developed reaction routes, the coupling of CO2
with epoxides to yield cyclic carbonates, a functionality with
many industrial relevant applications, has garnered consid-
erable attention.37−54 To probe the effect of various secondary
sphere modifiers on the catalytic performance of Br− anions in
the cycloaddition of CO2 and epoxides, we initially compared
the activities of PQA-pNH2Py-Br and PQA-Py-Br which

Figure 1. Activation energy diagram for porous polymeric pyridinium
salt catalyzed CO2 transformations. To simplify the figure, only the
corresponding pyridinium salt was shown (gray, C; blue, N; orange,
halide anions; yellow, functional group; pink, heteroatom; green,
substitute group).

Table 1. Textural Parameters of Various Pyridinium-Based
Porous Polymers and the Corresponding Catalytic Activity
in the Cycloaddition of CO2 and 1,2-Epoxy-3-
phenoxypropanea

aReaction conditions: 1,2-epoxy-3-phenoxypropane (1 g), CO2 (1
atm), 35 °C, catalyst (25 mg), and reaction for 72 h. bThe yields were
determined by 1H NMR.
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correspond to the polymeric pyridinium salts with modifiers of
−NH2 and −H, respectively, onto the para position of
quaternary ammonium motif. The reactions were carried out
with 1 g of 1,2-epoxy-3-phenoxypropane and 25 mg of catalysts
at 35 °C and 1 bar CO2 in neat conditions. PQA-Py-Br
converted 6% of the epoxide, whereas, under otherwise
identical conditions, PQA-pNH2Py-Br was more than fourfold
superior to PQA-Py-Br, offering a carbonate yield of 25%
(Table 1, entries 1 and 2). A set of comparative experiments
was carried out to rationalize the influence of the amino group
in the reaction. To investigate the role of H-bonding
interaction, we synthesized a polymeric pyridinium salt with
a modifier of −N(Me)2, named as PQA-pN(Me)2Py-Br, which
lacks the hydrogen-bond donor. A sharp drop in activity was
detected, giving a 10% conversion of the epoxide (Table 1,
entry 3). To explore the electron-donating property of the
amino group on this transformation, an electron-withdrawing
group, acetyl group, was placed on the amino group. The
resulting material, PQA-pNHCOMePy-Br, afforded a 17% 1,2-
epoxy-3-phenoxypropane conversion (Table 1, entry 4). To
sum up, the reactivity of these pyridinium-based catalysts
decreases in the order of PQA-pNH2Py-Br > PQA-
pNHCOMePy-Br > PQA-pN(Me)2Py-Br > PQA-Py-Br.
Given that only a very weak correlation could be established

between the catalytic efficiency with the materials’ properties
in terms of the density of catalytically active species, as well as
the material’s surface area and CO2 uptake capacity (Table 1
and Figures S13−S18 and S27−S29), it suggests that these
factors are not the dominant paradigm for determining the
catalyst performance; instead, the introduced secondary sphere
interactions are a more critical factor for the observed
discrepancy in catalytic performance. The superior perform-
ance of PQA-pNH2Py-Br, PQA-pN(Me)2Py-Br, and PQA-
pNHCOMePy-Br than the catalyst PQA-Py-Br presumably
arises from the equipped electron-donating groups. It weakens
the partial positive charge on the cations and facilitates the
formation of kinetically labile complexes, allowing for ready
Br− species leaving and consequently higher reactivity. To
explain why PQA-pNH2Py-Br and PQA-pNHCOMePy-Br
outperformed PQA-pN(Me)2Py-Br, we reasoned that the
−NH2 and −NHCOMe groups act as hydrogen-bond donors.
Reagents, such as epoxide, are prone to build interaction with
the amino/amide group via a hydrogen bond, yielding an
activated formulation and thereby facilitating the subsequent
transformation. Such explanations can correlate with the
following experimental results, wherein the introduction of
an electron-withdrawing and non-hydrogen-bond donor group,
−Cl, gave adverse consequences, with the lowest efficacy
among the five materials. The electron-withdrawing property
of the −Cl group decreases the leaving ability of the counter
anion of pyridinium, hence reducing its catalytic activity
(Table S3). These results thus validate how leveraging outer-
sphere engineering alters the catalytic performance.
As deduced from the results mentioned above, it is

envisioned that the relative location of the catalytic elements
can lead to diverged outcomes as a result of the “proximity
effect,” suitable location promoting the cooperation of various
catalytic elements, and consequently, the accompany reactivity.
Satisfied with the positive effect of the amino group on the
reaction outcomes, we set out to vary its relative location
toward the pyridinium motif. A material with the amino group
located in the ortho position of the pyridinium motif was
synthesized (PQA-oNH2Py-Br). PQA-oNH2Py-Br outper-

formed all other catalysts tested, with around 1.5-fold
superiority to PQA-pNH2Py-Br (37% vs 25%), under standard
conditions. To further illustrate the superiority of the −NH2
group on boosting the catalytic efficiency, we treated PQA-
oNH2Py-Br with acetyl chloride to yield PQA-oNHCOMePy-
Br. A decreased carbonate product yield was detected
compared to PQA-oNH2Py-Br (22% vs 37%) under standard
conditions. However, the superior performance of PQA-
oNHCOMePy-Br in comparison to PQA-pNHCOMePy-Br
further emphasized the location matter of the introduced
secondary sphere modifier relative to the catalytic site.
To benchmark the thermodynamic parameters associated

with these materials, detailed kinetic studies were performed in
the range of 35−50 °C. The conversion of 1,2-epoxy-3-
phenoxypropane steadily increased over time at all temper-
atures, and the apparent influence of temperature on the
reaction rate was observed, increasing along with reaction
temperature. The reactions are of first order, as demonstrated
by the fact that all of the catalytic data show excellent fits to the
linear plot of the natural logarithm of the epoxide
concentration against time (t) with correlation coefficients
(R2) approximately equal to 1 (Figure 2). The pseudo-first-

order rate constant k values of PQA-oNH2Py-Br derived from
the slopes are 0.00646, 0.00833, and 0.0135 s−1, at 35, 40, and
50 °C, respectively (Table S1). By increasing the temperature
to 120 °C, the reaction proceeded to completion within 12 h at
a substrate-to-catalyst ratio of 1000, placing it on par with the
most active heterogeneous organocatalyst for CO2 trans-
formation (Table S2).37−54 PQA-oNH2Py-Br showed higher
reaction rates at all temperatures evaluated in comparison to
other materials tested under the otherwise identical conditions
(Figures 2a and S19).
Using the Arrhenius equation (eq 1), the apparent activation

energy (Ea) was calculated by fitting the data from a plot of the
natural logarithm of the rate constant (ln k) against the
reciprocal of the absolute temperature (1/T). In the
temperature range of 35−50 °C, PQA-oNH2Py-Br, PQA-
pNH2Py-Br, PQA-pNHCOMePy-Br, PQA-pN(Me)2Py-Br,
PQA-Py-Br, and PQA-pClPy-Br exhibit Ea values of 40.8,
55.6, 61.0, 68.0, 77.6, and 82.6 kJ mol−1, respectively (Figures
3 and S20). This indicates that less energy is required for PQA-
oNH2Py-Br compared to other materials studied to achieve the
same outcome, confirming the advantages of equipping amino
group proximity to the pyridinium motif, and the enhanced
cooperation between these two catalytic elements reduces the
energy barrier required and improves efficiency.

Figure 2. (a) Kinetic rates of carbonate product yields and (b) first-
order reaction rate plots (R2 > 0.99 for all) over various polymeric
pyridinium salts at 35 °C.
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DFT Calculations. To gain an insight into the diverged
reaction outcomes for the catalytic materials with various
secondary sphere modifiers, DFT calculations were performed
according to the established reaction pathway. To simplify the
calculation, the pyridinium salt moieties and propylene oxide
were used as the models for catalysts and reagents, respectively.
The most stable transition-state structures in the rate-
determining step (ring-opening) along with the predicted
free-energy profiles catalyzed by these pyridinium salt moieties
are displayed in Figure 3.45 The hydrogen-bonding interaction
between the amino group and the O species in propylene oxide
was observed, as reflected by the enlargement of the C−O
bond, which facilitates the following bromohydrin formation
(Figure 4). To validate this experimentally, Fourier transform

infrared (FT-IR) analysis was carried out, showing that the C−
O vibration in the epoxide compound shifted from 1133 to
1129 cm−1 after association with PQA-oNH2Py-Br, and
concurrently, the N−H vibration shifted to 3345 cm−1 from
the pristine PQA-oNH2Py-Br (3338 cm−1, Figure S21). The
activation barrier from the ground state to the transition state
of the pyridinium moieties decreased in the order of pClPy-Br
(163.7 kJ mol−1) > Py-Br (148.6 kJ mol−1) > pN(Me)2Py-Br
(126.9 kJ mol−1) > pNHCOMePy-Br (119.7 kJ mol−1) >
pNH2Py-Br (108.7 kJ mol−1) > oNH2Py-Br (86.0 kJ mol−1),
which is in good agreement with the experimental trends
(Figure 3). According to these experimental results and
literature reports, a tentative mechanism was proposed (Figure
S22).
With the optimal material of PQA-oNH2Py-Br, we further

investigated its substrate tolerance. The catalyst system was
found to be applicable to a variety of epoxides, and all offered

the corresponding carbonate products in excellent yields with
only a slight difference in reaction rate (Table S4). The catalyst
showed excellent recyclability with fully retained activity for at
least 10 cycles (Table S5). Moreover, the structure integrity of
catalyst was maintained in this process, as revealed by IR
analysis and N2 sorption (Figures S23 and S24). To determine
the heterogeneity of the detected activity, we monitored the
potential Br−-ion leaching by a hot filtration experiment and
found no detectable increase in the yield of the carbonate
product for the resulting filtrate.
Advantageously, our strategy of tailoring the secondary

sphere modifiers to promote catalyst reactivity is also readily
extended to other reactions. To showcase this, we applied
these materials in the cycloaddition of aziridines and CO2,

55−58

showing that the performance of the Br− anions followed the
same trend as that observed in the coupling of epoxides and
CO2. PQA-oNH2Py-Br outperformed all other materials
evaluated in terms of reaction rate (Figures 5, S25, and S26,

and Table S6). Specifically, the pseudo-first-order rate constant
k values derived from the slopes of the reaction rate plots are
0.01037, 0.02422, 0.01381, 0.01845, 0.00852, and 0.02823 s−1

for PQA-Py-Br, PQA-pNH2Py-Br, PQA-pN(Me)2Py-Br, PQA-
pNHCOMePy-Br, PQA-pClPy-Br, and PQA-oNH2Py-Br,
respectively, at 40 °C (Figure 5b). Concretely, the activation
energy increased in the order of PQA-pClPy-Br (40.1 kJ

Figure 3. Summary of the apparent activation energies (Ea) in the cycloaddition of 1,2-epoxy-3-phenoxypropane and CO2 over various polymeric
pyridinium salts calculated by eq 1, and the optimized structures of the ring open step together with the corresponding activation barrier from the
ground state to transition state (ΔG) over various molecular pyridinium salts (Py-Br, pNH2Py-Br, pN(Me)2Py-Br, pNHCOMePy-Br, pClPy-Br,
oNH2Py-Br in sequence).

Figure 4. (a) Hydrogen-bonding interaction between the amine
group on the cationic moiety of PQA-oNH2Py-Br and propylene
oxide (atom colors in geometries: C, gray; N, blue; O, red; H, white)
and the comparisons of C−O bond lengths in propylene oxide (b)
and that with the hydrogen-bonding interaction with the amine group
(a). The unit of bond length is Å.

Figure 5. (a) Kinetic rates of oxazolidinone product yields and (b)
first-order reaction rate plots (R2 > 0.99 for all) over various
polymeric pyridinium salts at 40 °C. Reaction conditions: 1-butyl-2-
phenyl aziridine (175 mg, 1 mmol), CO2 (1 MPa), catalyst (5 mg),
and reaction for 6 h. The yields and the selectivity were determined
by 1H NMR. All catalysts gave the oxazolidinone products selectivity
higher than 99%.
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mol−1) > PQA-Py-Br (37.8 kJ mol−1) > PQA-pN(Me)2Py-Br
(35.4 kJ mol−1) > PQA-pNHCOMePy-Br (33.5 kJ mol−1) >
PQA-pNH2Py-Br (31.6 kJ mol−1) > PQA-oNH2Py-Br (27.6 kJ
mol−1), as shown in Figure 6.

■ EXPERIMENTAL SECTION
Synthesis of Polymeric Pyridinium Salt. Under solvothermal

conditions in dimethylformamide (DMF) at 100 °C, various vinyl-
functionalized pyridine-based monomers were polymerized in the
presence of azobisisobutyronitrile (AIBN) as a free-radical initiator.
The resulting polymers were treated with methyl iodide (CH3I),
followed by ion exchange with NaBr aqueous solutions (Figures S30−
S38).
Catalytic Tests. Cycloaddition Reactions of Epoxides and CO2.

Epoxide (1 g) and catalyst (25 mg) were introduced into a 10 mL
Schlenk flask. The resulting system was vacuum-sealed and then
purged with CO2 by adding a balloon. The tube was then placed in a
preheated oil bath and allowed to stir for a designated time interval.
The carbonate product yields were analyzed by 1H NMR (Figures
S39, S41, and S42). For the recycling test, the catalyst was separated
from the reaction system by centrifugation, washed with CHCl3 three
times, and dried. The resulting polymer was used directly for the next
catalytic evaluation.
Coupling of Aziridines and CO2. A 7 mL vial charged with 1 mmol

of aziridines and 5 mg of catalyst was placed in a 100 mL stainless
steel autoclave. After being sealed, the autoclave was purged with CO2
to 1 MPa. The autoclave was then placed in a preheated oil bath and
stirred for a designated time interval. The oxazolidinone product
yields were analyzed by 1H NMR using terephthalaldehyde as an
internal standard (Figures S40, S43, and S44).

■ CONCLUSIONS
In summary, we investigate in detail how secondary sphere
variations affect the reactivity of organocatalysts toward CO2
transformations through perturbation of the reactivity of the
active sites and activation of the reagents. A library of
substituted groups with changes in the electronic property and
the hydrogen-bond-donating ability was studied for tailoring
the properties of the polymeric pyridinium cationic framework,
demonstrating that the reactivity of the counter anions can be
optimized. It was also found that such effects on reactions are
position-dependent. Given the significantly accelerated kinetics
by a factor over six times, the strategy presented herein
provides an alternative route to the current ones that usually
call for the cumbersome development of new active sites.
Therefore, rational modification of the outer sphere should

accelerate improvements of catalysts and can serve as a
roadmap for future synthesis of highly efficient catalytic
materials.
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