VIP Very Important Paper

A Mixed-Metal Porphyrinic Framework Promoting Gas-Phase CO₂ Photoreduction without Organic Sacrificial Agents

Wen-Yang Gao⁺,^[b] Huong T. Ngo⁺,^[c] Zheng Niu,^[d] Weijie Zhang,^[a] Yanxiong Pan,^[e] Zhongyu Yang,^[e] Venkat R. Bhethanabotla,^[c] Babu Joseph,*^[c] Briana Aguila,^[f] and Shenggian Ma*^[a, g]

A photoactive porphyrinic metal-organic framework (MOF) has been prepared by exchanging Ti into a Zr-based MOF precursor. The resultant mixed-metal Ti/Zr porphyrinic MOF demonstrates much-improved efficiency for gas-phase CO₂ photoreduction into CH₄ and CO under visible-light irradiation using water vapor compared to the parent Zr-MOF. Insightful studies have been conducted to probe the photocatalysis processes. This work provides the first example of gas-phase CO₂ photoreduction into methane without organic sacrificial agents on a MOF platform, thereby paving an avenue for developing MOFbased photocatalysts for application in CO₂ photoreduction and other types of photoreactions.

Carbon dioxide, a primary greenhouse gas, can serve as an abundant and promising C1 building block molecule for a

[a]	Dr. W. Zhang, Prof. Dr. S. Ma Department of Chemistry, University of North Texas 1508 W Mulberry St, Denton, TX 76201 (United States)
[b]	E-mail: shenggian.ma@unt.eau Prof. Dr. WY. Gao ⁺ Department of Chemistry
[c]	New Mexico institute of Wining & Technology 801 Leroy Place, Socorro, New Mexico 87801 (United States) Dr. H. T. Ngo, ⁺ Prof. Dr. V. R. Bhethanabotla, Prof. Dr. B. Joseph Denartment of Chemical and Biomedical Engineering
	University of South Florida 4202 East Fowler Avenue, Tampa, FL 33620 (United States) E-mail: bioseph@usf.edu
[d]	Prof. Dr. Z. Niu College of Chemistry, Chemical Engineering and Materials Science Soochow University
[e]	Suzhou 215123, Jiangsu (P. R. China) Dr. Y. Pan, Prof. Dr. Z. Yang Department of Chemistry and Biochemistry North Dakota State University
[f]	1231 Albrecht Bld. Fargo, ND 58108 (United States) Prof. Dr. B. Aguila Department of Chemistry, Francis Marion University 4823 E. Palmatto St. Florence, SC 29506 (United States)
[g]	Prof. Dr. S. Ma Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States).
[+]	These authors contributed equally to this work.
	Supporting information for this article is available on the WWW under $https://doi.org/10.1002/cssc.202001610$
N.	This publication is part of a Special Issue entitled "Green Carbon Science: CO_2 Capture and Conversion". Please visit the issue at http://doi.org/10.1002/

variety of organic reactions.^[1] The naturally occurring photosynthesis process is the best example to harness CO₂ from the atmosphere as a C1 source and to utilize solar energy to convert CO₂ and H₂O into carbohydrates and O₂. Inspired by this metabolic process, numerous research efforts have been dedicated to replicating the natural process of photosynthesis using synthetic systems under ambient conditions.^[2] These artificial photosynthetic systems thus are expected to produce value-added chemical fuels to replace dwindling fossil fuel reserves while reducing the CO₂ concentration in the atmosphere to mitigate climate change issues. However, the conventional photoactive systems (e.g. TiO₂) typically lack either a suitable band gap to absorb a broad section of the solar spectrum or the appropriate conduction and valence band potentials (band edges) for CO₂ reduction, thereby limiting their efficiencies.^[3] Thus, strategies to tailor photocatalysts (e.g. TiO₂) for visible light absorption are critical to advance CO₂ reduction efficiency.^[4]

Chem Europ

European Societies

Check fo

The emerged metal-organic frameworks (MOFs),^[5] featuring structural designability and tunability, have been extensively explored for applications in gas storage/separation,^[6] catalysis,^[7] and many more areas.^[8] Recent studies have demonstrated the possibility of utilizing MOFs as photocatalysts for CO₂ conversion in liquid phase (e.g. water or organic solvents) reactions.^[9] Furthermore, these liquid phase reactions often require organic sacrificial agents, such as triethanolamine and triethylamine, making CO₂ reduction process costly.^[10] The gasphase CO₂ photoreduction using water vapor as the sacrificial agent remains promising but challenging, while the reaction medium affects the reaction pathway and selectivity.^[11] Employing designer MOFs as photocatalysts has been rarely investigated in gas-phase CO₂ photoreduction. Herein, we report that a MOF photocatalyst enables gas-phase CO₂ photoreduction into CH₄ and CO under visible-light irradiation in presence of water vapor without using any sacrificial agents.

A highly desired photocatalytic system needs to address the aforementioned critical issues: 1) appropriate band gap to absorb visible light; 2) using water, instead of organic sacrificial agents, as electron donor. To illustrate the proof-of-concept, we choose a porphyrin-based MOF as the photocatalyst for gasphase CO₂ reduction. The proposed photoactive MOF uses a porphyrinic ligand as a visible light harvesting antenna and metal-containing nodes or cluster as the catalytically active sites for CO₂ reduction. Meanwhile, inspired by the well-established

cssc v13.23

studies of TiO₂ as photocatalysts for CO₂ reduction,^[12] incorporation of active TiO₂ sites can be envisioned by post-synthetic metal metathesis with Ti species.

Considering its well-known remarkable water/chemical stability, the zirconium-based MOF-525 (denoted as Zr-MOF-525)^[13] was chosen in this work, which is composed of tetrakis (4-carboxyphenyl)porphyrin (H₄TCPP) linkers and zirconiumcontaining units of Zr₆O₄(OH)₄ shown in Figure 1. The desired photoactive catalyst was synthesized by a metal metathesis procedure to replace Zr with Ti in the precursor Zr-MOF-525,^[14] resulting into a mix-metal structural isomer denoted as Ti/Zr-MOF-525. The Ti/Zr atomic ratio in Ti/Zr-MOF-525 is 9:1 (see the Supporting Information, Table S1), measured by energydispersive X-ray spectroscopy (EDS) and inductively coupled plasma optical emission spectrometry (ICP-OES). Powder X-ray diffraction (PXRD) analysis (Figure S1) confirms that Ti/Zr-MOF-525 retains its structural integrity after metal ion exchange, in good agreement with the calculated PXRD patterns of Zr-MOF-525. N₂ adsorption studies at 77 K on the activated materials (Figure S2) show that both Zr-MOF-525 and Ti/Zr-MOF-525 are highly porous with Brunauer-Emmett-Teller (Langmuir) surface areas of 2492 (3134) $m^2 \cdot g^{-1}$ and 2780 (4202) $m^2 \cdot g^{-1}$, respectively, which are comparable to the reported value of MOF-525.^[13]

 CO_2 photoreduction experiments were carried out in a home-made batch reactor loaded with water vapor under irradiation using a 150 W Xenon lamp with a visible light long pass filter ($\lambda > 400$ nm). The CO_2 photoreduction results of Zr-

Figure 1. Schematic representation for synthetic processes of a photoactive porphyrin-based MOF, Ti/Zr-MOF-525, which is obtained by metal metathesis with Ti on Zr-MOF-525 assembled by tetrakis(4-carboxyphenyl)porphyrin and $Zr_6O_4(OH)_4$.

Figure 2. CO₂ photoreduction reactivity of Ti/Zr-MOF-525, Zr-MOF-525, TiO₂-P25, and H₄TCPP: (a) CH₄ and (b) CO production using Zr-MOF-525, Ti/Zr-MOF-525, TiO₂-P25, and H₄TCPP under visible-light illumination (λ > 400 nm) of a 150 W xenon lamp.

Background experiments (Table S2) include a blank run of Ti/Zr-MOF-525 with only N₂ and H₂O vapor under irradiation, a control run of Ti/Zr-MOF-525 with CO₂ and H₂O under dark conditions, a control experiment of Ti/Zr-MOF-525 with dry CO₂ under irradiation, and a test run of free base porphyrin (H₄TCPP) under the CO₂ photoreduction conditions. No formation of CO or CH₄ was observed for these control experiments, which validates our observed CO and CH₄ formation using Ti/Zr-MOF-525 during CO₂ photoreduction experiments. The reactivity of TiO₂-P25 was also included for comparison due to its wide use as photocatalyst for CO₂ reduction with H₂O. Negligible production of CH₄ occurred over TiO₂-P25. This lack of reactivity was attributed to the large band gap (3.1 eV) of TiO_2 -P25.^[15] In the initial half hour, the production rate of Ti/Zr-MOF-525 is $1.52\pm 0.23\;\mu mol\cdot h^{-1}\cdot g^{-1}~CH_{4}~(2865\pm 427\;ppm\cdot h^{-1}\cdot g^{-1})~$ and $0.50 \pm 0.17 \ \mu mol \cdot h^{-1} \cdot g^{-1} \ CO \ (947 \pm 319 \ ppm \cdot h^{-1} \cdot g^{-1})$, meaning a high reduction selectivity toward CH₄ over CO. After six hours under visible-light irradiation, the overall production of CH₄ and CO by Ti/Zr-MOF-525 showed $2.14\pm0.09\,\mu mol\cdot g^{-1}$ (4042 \pm 170 ppm \cdot g⁻¹) of CH₄ and 0.79 \pm 0.05 μ mol \cdot g⁻¹ (1492 \pm 89 ppm \cdot g⁻¹) of CO. Meanwhile, a significant amount of O₂ relative to CH₄ and CO was observed during the CO₂ photoreduction process by GC-MS (Figure S3). In contrast, Zr-MOF-525 yielded only $0.116 \pm 0.109 \ \mu mol \cdot g^{-1}$ ($218 \pm 205 \ ppm \cdot g^{-1}$) of CH₄ and 0.087 \pm 0.072 μ mol \cdot g⁻¹ (163 \pm 136 ppm \cdot g⁻¹) of CO. The overall photocatalytic activity of Ti/Zr-MOF-525 for CH₄ production is ~18 times higher than the parent Zr-MOF-525. Meanwhile, Ti/Zr-MOF-525 also shows much higher selectivity toward CH₄ over CO in comparison with Zr-MOF-525. Since CH₄ is much more energy-valuable than CO, Ti/Zr-MOF-525 presents a beneficial impact forward in the search for better photocatalysts. To track the reaction process, isotope labeled ¹³CO₂ was also employed to perform the photoreaction experiments. The signals of ¹³CH₄ and ¹³CO were observed in mass spectrometer (Figure S4), which indicates that the reaction products were generated from ¹³CO₂. These results highlight the first example of gas-phase CO₂ photoreduction into high fuelvalue compounds under visible-light irradiation without organic sacrificial agents based on a MOF platform. Although the prepared catalyst of Ti/Zr-MOF-525 demonstrates moderate catalytic performance by comparing with previously reported studies (see Table S3 for a comprehensive analysis of CO₂ photoreduction catalysis performances),^[16] the strategy of building a photoactive catalyst for selective gaseous CO₂ photoreduction under visible light is beneficial for the development of new catalysts.

Solid-state UV/Vis absorbance studies showed that the optical properties of the two MOFs are highly regulated by their porphyrin ligands (Figure S5). The absorption bands from 400–700 nm implied their ability to absorb light deep in the visible-light wavelength range. Also, observed were the four Q bands from the free-based porphyrin ligands in Zr-MOF-525 and Ti/Zr-MOF-525 at a range from 490–670 nm, which indicate the porphyrin ligand remains nonmetallated during metal meta-thesis. To estimate the ability of MOF-525 to absorb visible light,

optical band gaps were calculated from the UV/Vis solid-state absorption spectra of these MOFs by plotting the Kubelka-Munk function versus the energy of incident light in eV (inset of Figure S5). The bandgaps of Zr-MOF-525 and Ti/Zr-MOF-525 are extrapolated to be 1.7 eV (729 nm). The narrow bandgaps in MOFs are influenced strongly by their porphyrinic ligand. In both MOFs, the measured bandgaps (1.7 eV) closely resemble the optical absorbance spectrum of free-base TCPP ligand which has a UV/Vis absorption band (a Q band) at 645 nm or 1.9 eV.^[17] The values are red-shifted in respect to the free-base porphyrin ligand, due to the influence from its coordination to metal clusters. This small band gap value thus allows Zr-MOF-525 and Ti/Zr-MOF-525 to be excited in the visible spectrum.

To obtain mechanistic insight into the CO₂ photoreduction process, electron paramagnetic resonance (EPR) spectroscopy was used to probe reactive intermediates. When the preactivated Ti/Zr-MOF-525 dispersed in water was sealed in a capillary tube, a prominent signal at g = 1.97 was observed only after irradiation and assigned to the presence of Ti³⁺ (Figure 3).^[18] When air purged into the tube, the Ti³⁺ signal disappeared due to its oxidation back to Ti⁴⁺. The EPR spectra were also acquired on the activated Ti/Zr-MOF-525 powder sample with and without irradiation, which demonstrate no generation of Ti³⁺ without H₂O in these two experiments. These results highlight that H₂O plays a critical role of reducing agent to generate Ti³⁺ in the case of Ti/Zr-MOF-525. Another isotope labeled experiment was to employ H₂¹⁸O as the reagent for the CO₂ photoreduction experiment. The signal of ¹⁸O₂ (m/z=36;

Figure 3. EPR spectra acquired on Ti/Zr-MOF-525 dispersed in H₂O. a prominent signal at g = 1.97 was observed only after irradiation and assigned to the presence of Ti^{III}.

Figure 4. Proposed mechanism of electron transfer and CO₂ photoreduction processes within Ti/Zr-MOF-525 excited by visible-light illumination based on the observation of Ti^{III} and O₂ generated in the process.

Figure S4f) indicates that H_2O was oxidized into O_2 , whereas CO_2 was reduced into CH_4 and CO. In addition, the amount of experimentally observed O_2 is comparable to the amount of O_2 estimated by the amount of the photogenerated CH_4 and CO using reaction stoichiometry (Figure S3). These data confirm that the O_2 is concurrently generated from the oxidation of H_2O vapor while the CO_2 is reduced into CH_4 and CO.

Thus, we propose a tentative mechanism for the Ti-derived porphyrinic MOF catalyzing CO₂ and H₂O conversion into CO and CH₄ (Figure 4). After absorbing visible light, the porphyrinic ligands generate associated excited electrons, which migrate and transfer to the Ti-containing units nearby through an electron transfer process to reduce Ti⁴⁺ in the Ti-O cluster to Ti^{3+} . This separation process of generated e^{-}/h^{+} pair in MOFs has been proven to benefit the reactivity during photocatalysis.^[10e-g,19] Then CO₂ molecules adsorbed in the MOF pores are readily reduced by Ti³⁺ to form adsorbed CO species, which desorb into free CO or further react with more migrated electrons and protons generated from the oxidation of H₂O to form CH₄.^[20] Accordingly, the Ti-exchanged MOF has been proven to demonstrate much higher CO₂ affinity than its Zrbased parent MOF.^[21] More importantly, in the case of Ti/Zr-MOF-525 each photoactive units containing multiple Ti catalytic centers is connected with twelve TCPP ligands, which is expected to facilitate multiple-electron transfer processes leading to the favored eight-electron reduced product of CH₄. The porphyrinic ligands remain positively charged and oxidize water to generate O2.[22] Nonetheless, future detailed studies are needed to investigate the mechanism of the CO₂ photoreduction.

In conclusion, our study demonstrates for the first time that the mixed-metal porphyrin-based MOF, prepared by a Ti ionexchange procedure, is able to selectively reduce CO_2 into CH_4 over CO under visible-light irradiation using water vapor instead of any organic sacrificial agents in the gas phase. Insightful mechanistic studies have been conducted to understand the photocatalysis processes, including EPR, isotopic labeling experiments, and quantitative analysis of O_2 generated from the experiments. Our work opens a new door for developing MOFbased photocatalysts in gas-phase CO_2 reduction without using any organic sacrificial agents. Ongoing work in our laboratory is focused on understanding the mechanism of CO_2 reduction into high-value CH_4 and further improving the efficiency of CO_2 photoreduction catalysts.

Experimental Section

Synthetic procedures

Zr-MOF-525 was prepared using a modified form of the procedure described in the literature.^[13] Zirconyl chloride octahydrate (ZrOCl₂·8H₂O, 14 mg) was added to *N*,*N*-dimethylformamide (DMF, 10 mL) in a 20 mL scintillation vial and sonicated for 15 min. Then, tetrakis(4-carboxylphenyl)porphyrin (H₄TCPP, 29 mg) was added to the solution followed by 10 min of further sonication. Acetic acid (HOAc, 2.5 mL) was added to the solution. The scintillation vial was placed in an oven at 65 °C for 3 days. The dark colored powder was

collected via centrifugation, then washed 5 times with 10 mL of DMF. The DMF solvent was then exchanged 5 times with 30 mL of acetone over three days. The resultant Zr-MOF-525 was activated by heating at 120 °C under vacuum for 24 h. The Ti-exchange process of Zr-MOF-525 was carried out according to the work of Cohen and co-workers.^[10c] TiCl₄ (THF)₂ (81 mg, 0.24 mmol) was dissolved in anhydrous DMF (15 mL). Then, the activated Zr-MOF-525 (124 mg) was added. The above steps were finished in a glove box. The mixture was incubated at 85 °C in a preheated oven for 5 days. The solids were separated from the solvent via centrifugation and washed with fresh DMF at least 6 times. The washed solids were immersed in methanol for 3 days. The methanol was replaced every 24 h. The solids were activated at 120 °C under vacuum overnight.

CO₂ photoreduction experiments

The reaction was carried out in a stainless-steel batch reactor with a quartz window on top. Typically, 50 mg of prepared catalyst was uniformly spread on a 6.5 cm² base area of the reactor. Gaseous 99.99% CO2 was bubbled through distilled water at room temperature before introduction to the reactor. Before the experiment, the reactor was evacuated. Then water saturated CO₂ was flowed through at 2 mL/min for 30 mins to achieve equilibrium before two valves at the inlet and outlet of the reactor were closed for a batch reaction. The reaction was carried out at 20 psi, under irradiation of 150 W Xenon light equipped with a 1.5 AM filter and a visible long pass filter (λ > 400 nm) for 6 h. The reactor was cooled by flowing water to maintain isothermal reaction temperature at 40 °C. Control runs were performed under the following conditions to ensure that the gas products CO and CH₄ are not from non-photo-catalyzed reactions: (1) under dark condition, (2) with N₂ and H₂O vapor under irradiation, (3) control experiments of Ti/Zr-MOF-525 with dry CO₂. To monitor the reaction process, 80 µl gas samples were periodically removed by gastight syringe (Hamilton, 100 µl) for analysis by gas chromatography (GC, Agilent 6970C) with a thermal conductivity detector (TCD), equipped with a HP-Plot column.

Acknowledgements

S.M. acknowledges the NSF (DMR-1352065) for financial support of this work. Partial support from the Robert A. Welch Foundation (B-0027) is also acknowledged (S.M.).

Conflict of Interest

The authors declare no conflict of interest.

Keywords: carbon dioxide \cdot ion exchange \cdot metal–organic frameworks \cdot photocatalysis \cdot porphyrinoids

- [1] a) A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, *Chem. Rev.* 2013, *113*, 6621–6658; b) E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazábal, J. Pérez-Ramírez, *Energy Environ. Sci.* 2013, *6*, 3112–3135.
- [2] a) J. Su, L. Vayssieres, ACS Energy Lett. 2016, 1, 121–135; b) S. Berardi, S. Drouet, L. Francàs, C. Gimbert-Suriñach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501–7519; c) G. W. Brudvig, S.

Campagna, *Chem. Soc. Rev.* **2017**, *46*, 6085–6087; d) A. C. Benniston, A. Harriman, *Mater. Today*, **2008**, *11*, 26–34.

- [3] W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 2014, 26, 4607-4626.
- [4] a) Y. Zhang, X. Wang, P. Dong, Z. Huang, X. Nie, X. Zhang, *RSC Adv.* **2018**, *8*, 15991–15998; b) S. Wang, M. Xu, T. Peng, C. Zhang, T. Li, I. Hussain, J. Wang, B. Tan, *Nat. Commun.* **2019**, *10*, 676; c) C. Wang, R. L. Thompson, J. Baltrus, C. Matranga, *J. Phys. Chem. Lett.* **2010**, *1*, 48–53; d) S. Liu, J. Xia, J. Yu, *ACS Appl. Mater. Interfaces* **2015**, *7*, 8166–8175.
- [5] a) H.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415–5418; b) B. Li,
 M. Chrzanowski, Y. Zhang, S. Ma, Coord. Chem. Rev. 2016, 307, 106–129;
 c) C. H. Hendon, A. J. Rieth, M. D. Korzyński, M. Dincă, ACS Cent. Sci. 2017, 3, 554–563.
- [6] a) Y. Peng, T. Gong, K. Zhang, X. Lin, Y. Liu, J. Jiang, Y. Cui, *Nat. Commun.* 2014, *5*, 4406; b) E. Barea, C. Montoro, J. A. R. Navarro, *Chem. Soc. Rev.* 2014, *43*, 5419–5430; c) M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, *Chem. Rev.* 2012, *112*, 782–835; d) B. Van de Voorde, B. Bueken, J. Denayer, D. De Vos, *Chem. Soc. Rev.* 2014, *43*, 5766–5788; e) Z.-R. Tao, J.-X. Wu, Y.-J. Zhao, M. Xu, W.-Q. Tang, Q.-H. Zhang, L. Gu, D.-H. Liu, Z.-Y. Gu, *Nat. Commun.* 2019, *10*, 2911.
- [7] a) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, *Chem. Soc. Rev.* 2014, 43, 6011–6061; b) Z. Niu, W. D. C. B. Gunatilleke, Q. Sun, P. C. Lan, J. Perman, J.-G. Ma, Y. Cheng, B. Aguila, S. Ma, *Chem*, 2018, 4, 2587–2599; c) L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, *Chem. Rev.* 2017, 117, 8129–8176; d) Y.-B. Huang, J. Liang, X.-S. Wang, R. Cao, *Chem. Soc. Rev.* 2017, 46, 126–157; e) J.-X. Wu, S.-Z. Hou, X.-D. Zhang, M. Xu, H.-F. Yang, P.-S. Cao, Z.-Y. Gu, *Chem. Sci.* 2019, 10, 2199–2205.
- [8] a) W.-Y. Gao, M. Chrzanowski, S. Ma, *Chem. Soc. Rev.* 2014, *43*, 5841–5866; b) Y. Yue, P. F. Fulvio, S. Dai, *Acc. Chem. Res.* 2015, *48*, 3044–3052; c) Y. Cui, B. Lin, H. He, W. Zhou, B. Chen, G. Qian, *Acc. Chem. Res.* 2016, *49*, 483–493; d) A. Karmakar, P. Samanta, A. V. Desai, S. K. Ghosh, *Acc. Chem. Res.* 2017, *50*, 2457–2469.
- [9] a) A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, Angew. Chem. Int. Ed. 2016, 55, 5414–5445; Angew. Chem. 2016, 128, 5504–5535; b) Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu, Adv. Mater. 2017, 1702891; c) Y. Chen, D. Wang, X. Deng, Z. Li, Catal. Sci. Technol. 2017, 7, 4893–4904; d) C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, O. M. Yaghi, Nat. Rev. Mater. 2017, 2, 17045; e) Y. Wang, N.-Y. Huang, J.-Q. Shen, P.-Q. Liao, X.-M. Chen, J.-P. Zhang, J. Am. Chem. Soc. 2018, 140, 38–41; f) Y. Fang, Y. Ma, M. Zheng, P. Yang, A. M. Asiri, X. Wang, Coord. Chem. Rev. 2018, 373, 83–115; g) K. M. Choi, D. Kim, B. Rungtaweevoranit, C. A. Trickett, J. T. D. Barmanbek, A. S. Alshammari, P. Yang, O. M. Yaghi, J. Am. Chem. Soc. 2017, 139, 356–362; h) C. S. Diercks, Y. Liu, K. E. Cordova, O. M. Yaghi, Nat. Mater. 2018, 17, 301–307; i) H. He, J. A. Perman, G. Zhu, S. Ma, Small 2016, 12, 6309–6324.
- [10] a) R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H.-L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Adv. Mater. 2014, 26, 4783-4788; b) H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong, X. Wang, X. Meng, J. Zhang, J. Ye, Angew. Chem. Int. Ed. 2016, 55, 14310-14314; Angew. Chem. 2016, 128, 14522-14526; c) Y. Lee, S. Kim, J. K. Kang, S. M. Cohen, Chem. Commun. 2015, 51, 5735-5738; d) H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu, H.-L. Jiang, J. Am. Chem. Soc. 2015, 137, 13440-13443; e) S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 1034-1038; Angew. Chem. 2014, 126, 1052-1056; f) D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Chem. Eur. J. 2013, 19, 14279-14285; g) D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li, Chem. Commun. 2015, 51, 2056-2059; h) Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem. Int. Ed. 2012, 51, 3364-3367; Angew. Chem. 2012, 124, 3420-3423; i) C. Wang, Z. Xie, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2011, 133, 13445-1454; j) L.-Y. Wu, Y.-F. Mu, X.-X. Guo, W. Zhang, Z.-M. Zhang, M. Zhang, T.-B. Lu, Angew. Chem. Int. Ed. 2019, 58, 9491-9495; Angew. Chem. 2019, 131, 9591-9595.
- [11] a) A. Olivo, E. Ghedini, M. Signoretto, M. Compagnoni, I. Rossetti, *Energies* **2017**, *10*, 1394; b) M. Schreck, M. Niederberger, *Chem. Mater.* **2019**, *31*, 597–618.
- [12] a) K. Li, X. An, K. H. Park, M. Khraisheh, J. Tang, *Catal. Today* 2014, 224, 3–12; b) J. Low, B. Cheng, J. Yu, *Appl. Surf. Sci.* 2017, 392, 658–686; c) O. Ola, M. M. Maroto-Valer, J. Photochem. Photobiol. C 2015, 24, 16–42; d) A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia, *Energy Environ. Sci.* 2012, 5, 9217–9233; e) S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, *Angew. Chem. Int. Ed.* 2013, 52, 7372–7408; *Angew. Chem.* 2013, 125, 7516–7557.
- [13] W. Morris, B. Volosskiy, S. Demir, F. Gándara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart, O. M. Yaghi, *Inorg. Chem.* 2013, *51*, 6443–6445.
- [14] a) M. Kim, J. F. Cahill, H. Fei, K. A. Prather, S. M. Cohen, J. Am. Chem. Soc. 2012, 134, 18082–18088; b) C. K. Brozek, M. Dinca, Chem. Soc. Rev. 2014,

43, 5456–5467; c) J. G. Santaclara, A. I. Olivos-Suarez, A. Gonzalez-Nelson, D. Osadchii, M. A. Nasalevich, M. A. van der Veen, F. Kapteijn, A. M. Sheveleva, S. L. Veber, M. V. Fedin, A. T. Murray, C. H. Hendon, A. Walsh, J. Gascon, *Chem. Mater.* **2017**, *29*, 8963–8967.

- [15] H. Yaghoubi, Z. Li, Y. Chen, H. T. Ngo, V. R. Bhethanabotla, B. Joseph, S. Ma, R. Schlaf, A. Takshi, ACS Catal. 2015, 5, 327–335.
- [16] a) R. Li, W. Zhang, K. Zhou, Adv. Mater. 2018, 30, 1705512; b) X. Li, W. Li,
 Z. Zhuang, Y. Zhong, Q. Li, L. Wang, J. Phys. Chem. C 2012, 116, 16047– 16053; c) H. Rao, L. C. Schmidt, J. Bonin, M. Robert, Nature 2017, 548, 74–77; d) X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 2016, 9, 2177– 2196; e) K. Khaletskaya, A. Pougin, R. Medishetty, C. Rösler, C. Wiktor, J. Strunk, R. A. Fischer, Chem. Mater. 2015, 27, 7248–7257.
- [17] D. Marsh, L. Mink, J. Chem. Educ. 1996, 73, 1188.
- [18] a) S. Wang, L. Pan, J.-J. Song, W. Mi, J.-J. Zou, L. Wang, X. Zhang, J. Am. Chem. Soc. 2015, 137, 2975–2983; b) C. Mao, F. Zuo, Y. Hou, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2014, 53, 10485–10489; Angew. Chem. 2014, 126, 10653–10657.

- [19] A. S. Portillo, H. G. Baldoví, M. T. G. Fernandez, S. Navalón, P. Atienzar, B. Ferrer, M. Alvaro, H. Garcia, Z. Li, J. Phys. Chem. C 2017, 121, 7015–7024.
- [20] S. Jin, H.-J. Son, O. K. Farha, G. P. Wiederrecht, J. T. Hupp, J. Am. Chem. Soc. 2013, 135, 955–958.
- [21] C. H. Lau, R. Babarao, M. R. Hill, Chem. Commun. 2013, 49, 3634-3636.
- [22] a) T. Nakazono, A. R. Parent, K. Sakai, *Chem. Commun.* 2013, 49, 6325–6327; b) P. Wei, K. Lin, D. Meng, T. Xie, Y. Na, *ChemSusChem* 2018, 11, 1746–1750; c) J. Meng, P. Bi, J. Jia, X. Sun, R. Chen, *ChemistrySelect* 2017, 2, 4882–4888.

Manuscript received: July 2, 2020 Revised manuscript received: July 29, 2020 Accepted manuscript online: August 2, 2020 Version of record online: August 24, 2020