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ABSTRACT: Developing photocatalysts capable of visible-light-
driven water splitting to produce clean hydrogen (H2) is one of the
premier challenges for solar energy conversion into clean and
sustainable fuels. Inspired from the structure feature of photo-
system I in nature, we have designed and synthesized a series of
robust covalent organic frameworks (NKCOFs = Nankai
University COFs) based on electric donor−acceptor moieties, in
which the electron-donor group of pyrene can be used for
harvesting light. Meanwhile, benzothiadiazole with different
functional groups was introduced as an electron acceptor to tune
the light-adsorption ability of COFs. Notably, the activity of
NKCOF-108 for photochemical H2 evolution under visible light
was among the highest in COFs without hybridization with other
materials. We attribute the high hydrogen evolution rate of NKCOF-108 to its distinct structural features and wide visible-light-
response range. The highly ordered layered structure ensures that sufficient active sites are accessible for H2 production, and the
donor−acceptor design can promote the separation of photogenerated carriers. Our findings have provided an effective strategy to
design photocatalysts for light-driven H2 evolution.
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With the growing global demand for renewable and
sustainable energy sources, light-driven water splitting

to produce H2 has become the ultimate goal for the supply of
clean and sustainable energy.1−5 Photosystem I (PS I) is well
known to be the most efficient light converter in nature, which
possesses quantum efficiency approaching 100%.6 In PS I, the
electron donors (P700, a dimer of chlorophyll a) and acceptors
(iron−sulfur cluster) are arranged in ordered electron transfer
(ET) cofactors (Scheme 1a).7 This distinct donor−acceptor
arrangement contributes to the high efficiency of PS I.8

However, the vulnerable nature and the structural complexity
of PS I hinder it from practical applications. Thus, developing
highly efficient and robust artificial photosynthesis systems is
of significant importance.
In the past few decades, increasing efforts have been made to

fabricate organic conjugated polymers with electron-donor and
-acceptor moieties for the conversion of solar energy into
electric or chemical energy, owing to their advantages of high
stability, excellent electrical/electrochemical activity, high
carrier mobility, and mechanical properties.9,10 However,
traditional polymers usually displayed poor performance due
to the relatively low charge transportability resulting from their
lowly ordered structures,11,12 narrow light-response range,13

and strong recombination of photogenerated electron−hole
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Scheme 1. (a) Symmetrical Features of ET Cofactors in PS
Ia

aThe structure was derived from the 2.5 Å X-ray crystal structure of
PS I from Thermosynechococcus elongatus (PDB file accession no.
1JB0). (b) The relationship of donor−acceptor moieties in PS I. P700
at the bottom of the symmetric geometry as the primary electron
donor.67 The iron−sulfur cluster acts as the electron acceptor.68
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pairs.14 Since 2005, covalent organic frameworks (COFs) have
emerged as a new class of porous organic polymers with high
crystallinity, designable structure, high porosity, tunable pore
size, and customizable functionality for many potential
applications.15−28 Attributed to these features, COFs have
shown great promise in overcoming the aforementioned
drawbacks of traditional organic polymers.9,12,29,30 Moreover,
the highly ordered arrangement of functional moieties in COFs
can facilitate their electrical conductivity, charge-carrier
mobilities, and optical properties.31−39

Although a lot of COFs have been employed for H2
evolution lately (Tables S1 and S2), such as hydrazone-linked
TFPT-COF,40 azine-linked COFs (Nx-COF),41 diacetylene-
functionalized COFs (TP-BDDA COF),42 sulfone-containing
COFs (FS-COF),43 sp2 carbon-jointed-pyridinyl frameworks
(g-C40N3-COFs),44 donor−acceptor COF (sp2 Carbon-
COFERDN),

45 and crystalline covalent triazine frameworks
(CTF-HUST-A1),46 the reported COFs still faced some
drawbacks. (i) At present, the solar-to-hydrogen (STH)
conversion efficiencies for reported COF photocatalysts44,47

are far lower than the ideal solar-to-hydrogen conversion
efficiency value.48 (ii) Most pure COF photocatalysts have
relatively low photocatalytic efficiency.14,49 The COF-based
photocatalysts with the highest efficiency were mostly
fabricated via hybridizing COFs with other materials such as
MOFs,14 dyes,43 and MXene.49 The complicated hybridization
process increased the synthesis challenge of photocatalysts.
(iii) Moreover, the mechanism for the high performance of
COF photocatalysts is still underexplored. With respect to
these challenges, in this study, we adopted a rational strategy to
create a series of highly efficient COF photocatalysts
(NKCOF-108, −109, −110, and −111; NKCOF = Nankai
University COFs) with donor−acceptor moieties.45,50−56 After
systematical optimization, NKCOF-108 achieved high photo-
catalysis activity for H2 production. Moreover, both exper-
imental and simulation data unveiled in depth the mechanism
for high performance.
In PS I,57 the proteins fix the positions of electron donors

and acceptors (Scheme 1a) while forming a symmetrical
geometry and an ET path. P700 acts as the primary electron
donor, and iron−sulfur clusters act as the electron acceptor
(Scheme 1b). Inspired by the electron donor−acceptor in PS I,
we used pyrene moieties58,59 as the electron donor and
designed various electron acceptor moieties50,60 for photo-
catalytic H2 evolution. Meanwhile, we introduced alkynyl
groups as a bridge between electron donors and accepters to
achieve an efficient transfer of photogenerated electrons.61,62

In this study, benzothiadiazole and its fluorinated derivatives
(Figure 1a) were chosen as electron acceptors based on the
following considerations. Attributed to the N atoms with
higher electronegativity and CN groups with lower-energy
π-orbital, benzothiadiazole exhibits a strong electron-with-
drawing property.60,63,64 Moreover, the introduction of
electronegative fluorine groups can efficiently enhance the
performance of the electron acceptor.65,66 In addition, to
highlight the advantage of benzothiadiazole moieties, the
phenylene group as the electron acceptor was introduced for
comparison (Figure 1a).
A pyrene tetraamine (Figure 1a) was employed as a co-

monomer to react with dialdehydes, considering its conjugated
structure and high symmetry that facilitate the formation of
highly crystalline frameworks. Four isostructural COFs
(NKCOF-108, −109, −110, and −111) with a two-dimen-

sional (2D) layered packing structure and one-dimensional
(1D) tetragonal channels (Figure 1b) were synthesized via a
Schiff-base condensation reaction under solvothermal con-
ditions (Figures 1a and S1−S4).59 Powder X-ray diffraction
(PXRD) analyses elucidated the high crystallinity of the as-
synthesized COFs (Figure 2). Moreover, fully eclipsed AA
layer stacking and staggered AB layer stacking models were
constructed (Figure S5). Geometry optimizations of the
structural models were conducted using the Materials Studio
software package. The experimental PXRD patterns agreed
well with the patterns simulated from an AA-eclipsed layer
stacking model. NKCOF-108, −109, and −110 possess a
space group of P222 while NKCOF-111 possesses a space
group of PBAN due to the higher symmetry of the dialdehyde
monomer with phenyl as the symmetry center. The PXRD
patterns are dominated by an intense reflection in the low-
angle region at 2.4° (2θ) for all COFs, which can be assigned
to the primitive tetragonal lattice with an inplane lattice
parameter of ∼35 Å. The Pawley-refined patterns of NKCOFs
(blue curve) with low Rwp and Rp values (Figure 2) confirmed
the correctness of peak assignments, as evidenced by negligible
deviation from the observed PXRD patterns (red cycle). The
unit cell parameters of the refinement AA stacking models and
the coordinates of the simulated structures are provided in the
Supporting Information (Figure S5 and Tables S3−S6).
Notably, NKCOFs exhibited good chemical stability. After
various treatments, such as boiling water, organic solvents,
aqueous HCl (pH 1), and NaOH (1 M) solutions, all
NKCOFs retained their original PXRD profiles (Figure S6a−
d). Moreover, NKCOFs exhibited nearly no significant weight
loss in boiling water and organic solvents (Figure S6e),
indicative of their high solvent stability.
The Fourier transform infrared (FT-IR) spectra reveal a

stretching vibration band at 1627 cm−1 assigned to the CN
bonds for NKCOFs (Figure 3a). The CO and N−H signals
at 1692 and 3360 cm−1 were observed corresponding to the
terminal −NH2 and −CHO group on the surface of all
NKCOFs, respectively. Specifically, all NKCOFs showed a
peak at 2190 cm−1 that was assigned to the stretching bands of
CC triple bond. As shown in Figure 3b, the 13C cross-
polarization magic-angle spinning (CP-MAS) ssNMR spec-
trum of NKCOF-108 exhibits a set of signals between 80 and
160 ppm that originates from the aromatic carbons in the
framework. The carbon signals of CN and C-F on the

Figure 1. (a) Monomers of the NKCOFs. (b) Structural models for
NKCOFs with perfectly eclipsed AA stacking shown parallel to the
pore channel along the crystallographic c axis (top) and parallel to the
tetragonal layers (bottom).
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benzothiadiazole moiety and CN of imine groups over-
lapped at 140−165 ppm. Additionally, the signals of CC and
−CHO carbons were located at 105−85 and 189 ppm,
respectively, and the peaks for other aromatic carbon atoms
ranged from 110 to 140 ppm. A full assignment of all
resonances for other 13C CP-MAS ssNMR spectra of NKCOFs
is shown in Figure S7.
Nitrogen sorption isotherms were collected at 77 K to

examine the porosity of NKCOFs. As shown in Figures 4a and
S8 and S9, the isotherms of all COFs exhibit the typical type-
IV isotherm with a steep increase at low relative pressures,
indicating the mesoporous nature. The Brunauer−Emmett−
Teller (BET) specific surface areas were calculated to be 1880,
1540, 1230, and 1150 m2 g−1, and the Langmuir specific
surface areas were calculated to be 3056, 3239, 1802, and 1900
m2 g−1 for NKCOF-108, −109, −110, and −111, respectively.
The pore-size distribution calculated using the density
functional theory (DFT) revealed uniform mesosized pores
of ∼35 Å for NKCOFs (Figures 4a and S9), which are in
excellent agreement with the mesoporous features from
structural analysis and simulations. The high porosity and
mesopores can ensure NKCOFs with sufficient active sites
accessible for H2 evolution and benefit the ingress of reactants
(i.e., H2O, ascorbic acid) and diffusion of products (i.e., H2).

The morphological features of the as-synthesized COFs
were characterized using scanning electron microscopy (SEM)
(Figures 4b and S10). SEM images revealed that NKCOF-108,
−109, and −110 present particles with fibrous morphology,
while NKCOF-111 exhibited cottonlike aggregated particles.
Furthermore, high-resolution transmission electron micros-
copy (HRTEM) was used to confirm the formation of a
periodic framework for NKCOFs. Notably, HRTEM images
reveal the distinct 1D channels (the side views of the pore)
with a uniform diameter of ∼3 nm (Figures 4c and S11),
which is consistent with the pore diameter (∼3 nm) of the
simulated COF structure with AA stacking.41,44 Additionally,
all NKCOFs show similar lattice fringes (Figures 4d and S12),
indicative of the ordered alignment with a high degree of
crystallinity. The periodic patterns of ∼0.35 nm can be
observed for all COFs, corresponding to the π-stacked 2D
covalent sheets.
The UV/vis diffuse reflectance spectra show the strong

absorption of NKCOFs in both the UV and visible regions
(Figure 5a). Moreover, the light-absorption ability of NKCOFs
can be fine-tuned by adjusting electron acceptors. NKCOF-
111 (phenylene as the acceptor) presents the narrowest light
response among all NKCOFs. With benzothiadiazole deriva-
tives as electron acceptors, NKCOF-108, −109, and −110
show different degrees of red shift in the optical absorption

Figure 2. Experimentally observed PXRD patterns (red cycle), Pawley-refined patterns (blue line), the Bragg positions (green line), and the
difference between experimental and calculated data (orange line) of (a) NKCOF-108, (b) NKCOF-109, (c) NKCOF-110, and (d) NKCOF-111
for AA stacking.

Figure 3. (a) FT-IR spectra of NKCOFs. (b) 13C CP-MAS ssNMR spectrum of NKCOF-108. Spinning sidebands are marked with asterisks.
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onset from 500 to 700 nm compared with NKCOF-111. It was
found that the introduction of fluoride groups on benzothia-
diazole units (NKCOF-108 and −109) can significantly
promote light absorption, and NKCOF-108 with monofluori-
nated benzothiadiazole exhibits the widest light-absorption
range. The optical band gaps (Eg) of NKCOF-108, −109, −
110, and −111 were determined to be 1.82, 1.89, 1.96, and
2.15 eV, respectively, according to the Kubelka−Munk
function (Figure S13). To further understand the enhanced

visible-light responses and investigate the highest occupied
molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) levels, cyclic voltammetry measure-
ments of the NKCOFs were recorded (Figures S14 and S15).
As shown in Figure 5b, LUMO levels of all COFs are well-
positioned for visible-light-driven H2 production from water
splitting. To gain more insight into the trend of energy levels,
Mott−Schottky analysis was conducted (Figure S16). It is
clearly presented that all photoanodes exhibit positive slopes,

Figure 4. (a) N2 adsorption (solid symbols) and desorption (open symbols) isotherms of NKCOF-108 at 77 K. The inset shows the pore-size
distribution of NKCOF-108. (b) Scanning electron microscopy (SEM) images of NKCOF-108. (c, d) High-resolution transmission electron
microscopy (HRTEM) images of NKCOF-108. The inset shows the high-resolution image of the lattice fringes.

Figure 5. (a) UV/vis diffuse reflectance spectra of NKCOFs. (b) The band edge positions of NKCOFs (these vacuum-level values were converted
to electrochemical potentials as follows: −4.44 eV vs vacuum level is equal to −0.4 V vs normal hydrogen electrode (NHE) at pH 7); HOMO =
LUMO − Eg. (c) Steady-state photoluminescence (PL) spectra for the NKCOFs. Photoexcitation was achieved with a picosecond diode laser at
510 nm. (d) Photocurrent measurements for the NKCOFs in 0.1 M Na2SO4 solution (a Ag/AgCl reference electrode) under visible light (>420
nm) irradiation.
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showing n-type semiconductor features. The flat-band
potentials (Efb) display a gradually negative shift from the
NKCOF-108 to −111 photoanode. The Efb of NKCOF-108,
−109, −110, and −111 are fitted to be −0.31, −0.31, −0.40,
and −0.51 V vs normal hydrogen electrode (NHE),
respectively. In addition, the Efb of all COFs is more positive
than their LUMO levels, which is a common phenomenon in
an n-type semiconductor.69 These results suggested that the
boosted visible light responses resulted from the downshifted
LUMO and HOMO energy levels of NKCOFs, attributed to
the contribution of the fluorine atom.66 Furthermore, the
similar trends of HOMO and LUMO levels were also
confirmed by density functional theory (DFT) calculations
(Figure S17a). The density of states (DOS) of NKCOFs
(Figure S17b) revealed that HOMO and LUMO levels were
mainly contributed by the 2p orbital of C atoms,
demonstrating that the photogenerated electrons are from π-
delocalization. Therefore, modification of electron acceptors
with different functional groups provides an effective strategy
to optimize the photoredox potentials of COFs.
Further insight into the electron transfer behavior was

revealed by steady-state photoluminescence (PL) spectra and
photocurrent experiments (Figure 5c,d). As compared with
NKCOF-111, the red-shifted main peaks of NKCOF-108, −
109, and −110 can be observed corresponding to their wider
visible-light-response range (Figures 5a and S18). Besides, the
downward trend of PL intensity (NKCOF-108 ≈ NKCOF-
109 < NKCOF-110 < NKCOF-111) indicated that the
recombination of photoexcited electron−hole pairs was
significantly suppressed.70,71 This was further verified by
their time-resolved fluorescence emission decay spectra
(Figure S19) and enhanced photocurrent intensity (Figure
5d). NKCOFs showed triexponential decay curves. NKCOF-
111 presented the shortest fluorescence lifetime, which
reflected its high carrier recombination rate. The shorten
fluorescence lifetime from NKCOF-110 to −108 may be

caused by the charge transfer in the framework.72 In addition,
the HOMO electrons are distributed mainly on electron-rich
aromatic carbon skeletons, whereas the LUMO electrons are
mainly focused on electron-deficient benzothiadiazole and its
fluorinated derivatives units (Figure S20). The DFT
calculation results further suggested that benzothiadiazole
and its derivatives units were more favorable for π-
delocalization. The photocurrent intensity with a reproducible
response generated by NKCOFs indicates that the photo-
induced carriers transferred on the photoelectrode. NKCOFs
with different electron acceptors showed an obviously different
long-term steady photocurrent density response. The trend of
the generated photocurrent density for NKCOFs is consistent
with that of the photocatalytic hydrogen evolution rate (HER).
These results indicated that benzothiadiazole derivatives
facilitate efficient charge-carrier transport and electron
delocalization in COFs. NKCOF-108 showed the highest
photocurrent density among all NKCOFs, indicating that the
monofluorinated benzothiadiazole unit is more conducive in
separating the photogenerated charges.
H2 evolution experiments were performed by irradiating a

suspension of photocatalysts in a 100 mL aqueous solution
(Figure S21) using ascorbic acid as a sacrificial electron donor
and Pt as a cocatalyst with visible light (λ > 420 nm) at 5 °C
(Labsolar−IIIAG, Beijing Perfectlight). Interestingly, pure
NKCOFs (10 mg) without the Pt cocatalyst can enable steady
production of H2 with an average hydrogen evolution rate
(HER) of 0.50, 0.42, 0.40, and 0.35 μmol h−1 for NKCOF-
108, −109, −110, and −111 (Figure S22), respectively. To
explore if the residual Pd is attributed to the H2 production,
the contents of residual Pd in NKCOFs were determined by
inductively coupled plasma mass spectrometry (ICP-MS). Less
than 0.05 wt % of Pd was found for all NKCOFs. Furthermore,
X-ray photoelectron spectroscopy (XPS) (Figure S23) and
energy-dispersive X-ray (EDX) spectroscopy (Figure S24) did
not detect signals for Pd due to its extremely low content. To

Figure 6. (a) Optimization of the photocatalyst quality for the maximum average hydrogen production rate in 4 h. (b) Apparent quantum
efficiency (AQE) values of the photocatalysts under the conditions of maximum hydrogen production rate according to (a) (λ = 420 ± 10, 500 ±
10 520 ± 10, 550 ± 10, 600 ± 10, and 700 ± 10 nm; NKCOF-108 and 109: 15 mg, NKCOF-110: 20 mg, NKCOF-111: 25 mg). (c) Long-term
H2 evolution test of NKCOF-108 monitored over 16 h with evacuation every 4 h. (d) Hydrogen-binding free energy, ΔGH*, at nitrogen, sulfur, and
carbon sites in the case of one hydrogen atom.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://dx.doi.org/10.1021/acscatal.0c04820
ACS Catal. 2021, 11, 2098−2107

2102

http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04820/suppl_file/cs0c04820_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04820/suppl_file/cs0c04820_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04820/suppl_file/cs0c04820_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04820/suppl_file/cs0c04820_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04820/suppl_file/cs0c04820_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04820/suppl_file/cs0c04820_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04820/suppl_file/cs0c04820_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04820/suppl_file/cs0c04820_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acscatal.0c04820/suppl_file/cs0c04820_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04820?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04820?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04820?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.0c04820?fig=fig6&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c04820?ref=pdf


further improve the hydrogen evolution performance, Pt, a
widely used cocatalyst,73 was in situ deposited into the network
of NKCOFs according to the common literature method. We
systematically investigated the correlation between the H2
production rate and the Pt loading amount. After optimization,
5 wt % Pt-modified NKCOF-108 achieved the best perform-
ance (Figure S25).
To make full use of light sources, we attempted to optimize

the photocatalyst quality for the maximum hydrogen evolution
rate (Figures 6a and S26). We found the trend of the HER to
be NKCOF-108 > NKCOF-109 > NKCOF-110 > NKCOF-
111. The HER of NKCOF-108 reached up to 120 μmol h−1

under optimized conditions. This result suggests that
benzothiadiazole and fluorine groups are crucial for high
photocatalytic performance. Under the optimized conditions,
the enhanced visible-light HER of NKCOF-108 with the Pt
cocatalyst can also be attributed to the wide light-absorption
range, as expressed in the apparent quantum efficiency (AQE)
at 420, 500, 520, 550, 600, and 700 nm when using
monochromatic light (Figure 6b and Table S7). The AQE
decreased with increasing wavelength, and the longest
wavelength capable of triggering the reaction coincided with
the optical absorption onset of NKCOFs. These results clearly
prove that the light conversion efficiency is highly dependent
on the light-response range of NKCOFs (Figure S13b).
Besides, NKCOF-108 showed higher AQE values at each
wavelength (2.96% at 520 nm) than those of other NKCOFs.
These results indicated that monofluorinated benzothiadiazole
promoted effective utilization of light.
Notably, NKCOF-108 showed a remarkably high HER (120

μmol h−1) (Figure S27). Besides, HERs with surface area
normalized were also estimated (Figure S27c), which exhibited
a similar trend as the above result. Two widely studied
photocatalysts P25 (TiO2) and polymeric carbon nitride
(PCN) were selected for comparison under the same
experimental conditions. PCN was synthesized by calcination
of urea at 550 °C,73 and the related characterizations are
shown in Figure S28. Negligible H2 was detected for P25
because it barely absorbed visible light. The PCN showed a
low HER of 5.5 μmol h−1, which was 21 times lower than that
of NKCOF-108. To highlight the advantage of crystalline
polymers compared with amorphous polymers, an amorphous
phase of NKCOF-108 was synthesized with the same
monomers (the PXRD pattern shown in Figure S29a). During
the photocatalysis test, amorphous NKCOF-108 showed a
stable HER of 76 μmol h−1, which is 1.5 times lower than that
of crystalline NKCOF-108 (Figure S29b). The surface-area-
normalized HERs for NKCOF-108 and its amorphous phase
were also calculated and compared (Figure S29). Compared
with NKCOF-108, the reduced photocurrent density of
amorphous NKCOF-108 suggested the suppressed recombi-
nation of photocarriers by the crystalline structure (Figure
S30). These results clearly demonstrated that materials’
crystallinity has a positive effect on their photocatalysis
performance.
Moreover, the photostability of NKCOF-108 was confirmed

via testing long-term H2 evolution (Figure 6c). The steady
HER without significant decay can be observed during the
photocatalysis experiment (16 h) for NKCOF-108 under
visible light irradiation (λ > 420 nm). After the photoreaction,
PXRD data revealed that NKCOF-108 retained its crystallinity
(Figure S31). Furthermore, FT-IR spectra (Figures S32) of all
NKCOFs recycled after photocatalysis did not show any

significant changes. These results suggest the outstanding
stability and reusability of NKCOF-108.
According to previous research, benzothiadiazole is the main

active site for hydrogen production. Therefore, DFT
calculations were carried out to investigate the H2 evolution
reaction pathways on possible active sites around monofluori-
nated benzothiadiazole. As shown in Figure 6d, there is a
distinct difference in hydrogen-binding free energy (ΔGH*)
when different sites are hydrogenated. The high hydrogen-
binding free energy at the sulfur and carbon sites proved that
there is a high overpotential for the HER, whereas the
hydrogen-binding free energy ΔGH* at the nitrogen sites
decreased to about 0.42, 0.40, and −0.37 eV for N1, N2, and
N3, respectively, showing that the addition of benzothiadiazole
units and imine linkage in NKCOF-108 leads to stronger
hydrogen adsorption, which in turn favors the energetics
toward H2 formation.
During the photocatalytic H2 evolution experiments, Pt

nanoparticles were photodeposited on the surface of the
samples. In other words, the deposition site of Pt corresponds
to the terminal point of the photogenerated electron transfer in
the framework. XPS tests have been used to analyze the
position of Pt loaded on NKCOFs. High-resolution Pt 4f XPS
spectra of all NKCOFs after photocatalysis could be
deconvoluted into two pairs of peaks corresponding to Pt0

and Pt2+ on the basis of database values (Figure S33). Pt0 was
effective for H2 evolution, while Pt

2+ was from the oxide on the
surface of Pt0 and coordination with NKCOFs. By comparing
the samples before and after photocatalytic H2 production, we
found that the binding energy of benzothiadiazolyl N 1s, F 1s,
and S 2p orbitals were changed. Besides, the high binding-
energy shift of terminal −NH2 N 1s can also be observed.
Simultaneously, the binding energy of imine N 1s orbitals did
not show any change in NKCOF-108, −109, and −110
(Figures S34−S37). These XPS results indicated the strong
interaction among Pt, benzothiadiazole, and its fluorinated
derivative units. Therefore, benzothiadiazolyl N and S can
anchor the Pt cation, and these sites can donate electrons to
reduce the Pt cation to form Pt nanoparticles for H2
production during illumination.
To explore the true active sites on different NKCOFs, we

performed an in situ FT-IR test for the NKCOFs.74 The peak
of CN on benzothiadiazole overlapped with that of CO,
which was absent before illumination. Under light irradiation,
the peak at 1670 cm−1 that was assigned to the CN on
benzothiadiazole gradually appeared on the FT-IR spectra of
NKCOF-108, −109, and −110 (Figure S38) because of the
accumulation of charges. By contrast, the FT-IR spectra of
NKCOF-111 without benzothiadiazole groups showed no
significant changes before and after illumination. After
adsorbing ascorbic acid, this peak did not appear in the FT-
IR spectra for all NKCOFs under light irradiation (Figure
S39). These results revealed that the true active sites on
NKCOF-108, 109, and 110 could be the N sites on
benzothiadiazole. According to the XPS results (Figure
S34d) and the literature,75 the active sites of NKCOF-111
may be the N sites on the imine bond that bridged monomers.
These inferences were consistent with the DFT calculation
results.
The major differences between NKCOFs lie in their

different acceptor units, leading to the difference in optical
properties. The broad light-harvesting range and improved
separation of photogenerated electron−hole pairs by introduc-
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ing acceptor units (NKCOF-108, −109, and −110) are the
important factors to improve the photocatalytic activity. In
addition, the photogenerated electron transfer behavior also
plays a crucial role in the enhanced photocatalytic perform-
ance. It should be noted that photocatalytic H2 production can
be achieved only when the photogenerated electrons are
transferred to the active sites. Therefore, it is necessary to
ensure that more photogenerated electrons can be transferred
to the H2 production active sites when using strong acceptor
units.
The photoelectron transfer pathway in these NKCOFs can

be inferred and are displayed in Figure S40. It is well
established that the charges tend to transfer to the acceptor
units in the donor−acceptor polymers.76,77 Due to the
introduction of benzothiadiazole and its derivatives as acceptor
units, NKCOF-108, −109, and −110 showed higher photo-
catalytic activity than NKCOF-111. However, the limited
electron-withdrawing ability of benzothiadiazole leads to the
decrease of the light-absorption ability of NKCOF-110, and
the active sites (nitrogen sites on benzothiadiazole) in
NKCOF-110 cannot efficiently concentrate the photogener-
ated electrons for H2 production. To obtain stronger acceptor
units, F atoms were introduced into benzothiadiazole.
NKCOF-108 and −109 with stronger electron acceptors
(i.e., fluorinated benzothiadiazole) than NKCOF-110 ex-
hibited enhanced photocatalytic performance compared to
NKCOF-110. NKCOF-109 with the difluorinated benzothia-
diazole unit showed lower photocatalytic performance than
NKCOF-108 with the monofluorinated benzothiadiazole unit.
This should result from the transfer paths of photogenerated
electrons in these NKCOFs. The photogenerated electrons
cannot be delivered to N sites for H2 production in NKCOF-
108 and −109 with strongly electrophilic F atoms.78 F atoms
can extract the photogenerated electrons in NKCOFs, and the
high content of F atoms in NKCOF-109 leads to the decreased
number of electrons for photocatalytic reaction. Therefore, a
balance between the strength of acceptor units and the content
of F atoms on benzothiadiazole should be taken into full
consideration to realize an optimized performance in photo-
catalytic H2 production. Monofluorinated benzothiadiazoles in
NKCOF-108 can not only ensure the strength of the acceptor
unit but also make the photogenerated electrons transfer to the
active sites as much as possible. As a result, NKCOF-108
showed the highest photocatalytic performance among all
NKCOFs. In the presence of Pt, the N sites (active sites) can
anchor Pt and tend to donate electrons to Pt nanoparticles for
H2 production. Therefore, the Pt-modified NKCOFs showed
higher photocatalytic performance than the pure COF systems.
In conclusion, we have created a rational design strategy to

employ benzothiadiazole and its derivatives as electron
acceptors to construct a series of 2D COFs (NKCOFs) with
high crystallinity, high porosity, and good stability. We found
that the modification of electron acceptors with different
functional groups (e.g., fluorine) can efficiently adjust the
photoredox potentials and broaden the light-response range of
NKCOFs via adjusting their HOMO and LUMO levels. The
excellent light-harvesting characteristics and appropriate band
energy levels of NKCOFs render them perfect candidates as
photocatalysts for H2 evolution from water. After optimization,
NKCOF-108 exhibited enhanced photocatalytic performances
(HER = 120 μmol h−1) with the AQE as 2.96% at 520 nm
among NKCOFs. We attributed the outstanding performance
of NKCOF-108 to the following factors: (i) its wide light-

response range promotes efficient harvesting of low-energy
photons for photocatalytic H2 production, (ii) its high
crystallinity and surface area ensure sufficient active sites
accessible for H2 production, and (iii) the highly ordered
layered structure promotes mobility and separation of
photogenerated carriers. This study not only provides valuable
guidance for the rational design of COFs as highly efficient
photocatalysts but also opens up an effective avenue to
construct robust and reusable photocatalysts.
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