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ABSTRACT: Excessive phosphate poses a serious ecological and
human health risk, and thereby, monitoring its trace concentration
is of great significance to environmental protection and human
health. In this work, a zirconium−porphyrin framework (PCN-
222) with excellent stability and unique luminescence properties
was designed to modify the surface of the indium tin oxide
electrode, which was first used as a photoelectrochemical (PEC)
probe for phosphate detection. The PCN-222-modified PEC probe
demonstrated an excellent selectivity and stability and indicated a
linear response to phosphate in the range of 0−106 nM with a limit
of detection (LOD) as low as 1.964 nM. To the best of our
knowledge, this is the phosphate probe with the lowest LOD, and
this is also the first signal-on PEC probe toward phosphate based
on PCN-222. More importantly, the PEC probe can be validated for the good applicability of trace phosphate detection in real water
samples, indicating a good application prospect. Finally, a series of electrochemical and spectroscopic studies have proved that
phosphate can bind to the indium tin oxide (ITO)/PCN-222 electrode, which shortens the distance of the space charge region while
reducing the bandwidth and thus facilitates the transfer of photogenerated electrons across the energy band barrier to reduce O2 in
the electrolyte, producing an enhanced cathodic photocurrent signal. The proposed strategy of the highly sensitive PEC probe
provides a promising platform for more effective label-free phosphate monitoring in the environment and organisms.
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1. INTRODUCTION

The excessive presence of phosphate in aquatic environments
causes eutrophication of water bodies and death of aquatic
organisms and also affects the safety of human drinking
water.1−3 In this regard, phosphate has been used as an
indicator to assess the water quality. On the other hand,
phosphate plays an important role in many physiological
processes, such as energy metabolism, bone mineralization, cell
signal transduction, etc.4−7 The level of phosphate in body
fluids has been regarded as an indicator to assess individual
health status, as abnormal levels of phosphate in body fluids are
highly associated with various clinical diseases, including
vitamin D deficiency, hypertension, hyperphosphatemia,
Fanconi syndrome, hyperthyroidism, rickets, etc.3,5,8−11

However, phosphate exhibits an orthotetrahedral structure
and strong hydrophilicity and the characteristic pH-dependent
morphological changes inevitably.12 These characteristics
necessarily make it difficult to selectively detect phosphates
in aqueous media.13 It is therefore essential to investigate
highly specific and inexpensive detection methods for
phosphate, not only from an ecological but also from a
biomedical point of view.2,14,15

Although various techniques have been developed for the
phosphate analysis, including optofluidic chips,16 colorime-
try,17,18 chromatography,19−21 fluorescence analysis,1,11,17,22

and electrochemical analysis,14,23,24 there are still some
pressing drawbacks to be addressed, such as poor sensitivity,
complex operation, bulky and expensive equipment, compli-
cated sample handling, etc.14 Photoelectrochemical (PEC)
sensing combines the advantages of both electrochemical and
photochemical sensing. PEC sensing is simple, inexpensive,
and portable. On the other hand, the excitation source and the
detection signal use two different energies, and they are
completely independent, which greatly reduces the background
noise and provides higher detection sensitivity.25−27

In recent years, several fluorescence sensing platforms based
on metal−organic frameworks (MOFs) have been developed
and widely used for the detection of phosphates.2,17,28 Among
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them, Zr−porphyrin MOFs synthesized from tetra(4-
carboxyphenyl)porphyrin (H6TCPP) have attracted much
attention for their excellent stability and unique luminescence
properties.1,17 Due to the strong affinity between Zr4+ ions and
phosphates, zirconium nodes and porphyrin ligands can act as
recognition active sites and signal reporter groups for
phosphates, respectively, in Zr-TCPP-MOFs, enabling quanti-
tative detection by fluorescence. Inspired by the excellent PEC
activity of porphyrins and the high specific surface area and
outstanding aqueous stability of Zr-MOFs, Zr-TCPP-MOF
materials are expected to achieve better photoelectrochemical
sensing applications in aqueous media.29

Based on the above-mentioned discussion, a porous
zirconium−porphyrin MOF with the formulation [Zr6(μ3-
OH)8(OH)8(H2TCPP)2] (PCN-222) was selected as an
electrode material. PCN-222 has been widely studied in
application fields such as catalysis,30−34 adsorption and
separation,35−40 drug delivery,41 and chemical sensing29,42,43

due to its excellent structure and properties. PCN-222 has both
photoelectric activity and chemical binding property, and we
constructed it as an ultrasensitive PEC probe for phosphate
detection. The probe can be used to detect phosphate in
natural water. The mechanism of PEC detection was
investigated by a series of spectroscopic and electrochemical
characterizations. This work provides a new idea for water
eutrophication monitoring and supports the development of
PEC probes for phosphate.

2. EXPERIMENTAL SECTION
2.1. Material and Characterization (Section 1 in the

Supporting Information). 2.2. Synthesis of PCN-222. PCN-
222 was synthesized according to the method reported in the
literature.44,45 The purple hexagonal rod-shaped PCN-222 crystals
were collected by high-speed centrifugation and washed with N,N-
dimethylformamide (DMF, 5 × 20 mL). The DMF was subsequently

exchanged with acetone (3 × 20 mL) and stirred at 60 °C for 3 days.
After the removal of acetone by centrifugation, the PCN-222 sample
was activated in vacuum for 12 h at 120 °C.46

2.3. Preparation of ITO/PCN-222. First, indium tin oxide (ITO)
electrodes (15 × 45 × 2.2 mm3, 7.0 Ω) were cleaned sequentially with
acetone, ethanol, and ultrapure water by ultrasonication for 30 min
and dried under nitrogen for use. The PCN-222 suspension was
prepared by mixing a 2.0 mg sample and 1.0 mL of ethanol and stored
at 4 °C. A total of 15.0 μL of the suspension was coated on the ITO
surface into a circle with a diameter of 0.6 cm and dried at room
temperature, obtaining ITO/PCN-222 electrodes. In addition, the
H6TCPP-modified ITO (ITO/H6TCPP) electrode was prepared
according to the same procedure for comparison.

2.4. Study of the PEC Performance of ITO/PCN-222. The as-
prepared ITO/PCN-222 electrode was incubated in 4-(2-
hydroxyerhyl)piperazine-1-erhanesulfonic acid (HEPES) buffer sol-
ution (10 mM, pH = 6.8) containing different common ions (K+, Na+,
Mg2+, Cd2+, CO3

2−, Ac−, Cl−, SO4
2−, NO3

−, MnO4
−, Cr2O7

2−, ClO3
−,

H2O2, glucose, glutathione, phosphate, 1.0 μM) for 2 h at room
temperature. The electrode was washed with HEPES buffer and then
transferred to a three-electrode cell for photocurrent signal measure-
ments. Moreover, the xenon light source was switched on and off and
irradiated cyclically (at 30 s intervals) until the photocurrent
stabilized. Finally, the ITO/PCN-222 electrode produced a PEC
signal in an air-saturated HEPES solution (10 mM, pH = 6.8)
containing 0.01 mM dopamine (DA) as the electron donor at room
temperature. DA is a small-molecule neurotransmitter, which can
serve as an electron donor for photoactive materials.29 As shown in
Figure 6, oxidation of DA promoted more electrons to transition to
the conduction band of PCN-222, effectively inhibiting the
recombination of electron−hole pairs and promoting the continuous
and stable generation of photocurrent.

2.5. Phosphate Detection in Real Water Samples. Real water
samples (tap water and drinking water, collected in Shanxi University)
were pretreated with 0.22 μm membrane filters to remove solid
substances, and then, the phosphate concentrations in these two
spiked water samples were detected using ITO/PCN-222. The
detailed detection process in real samples was similar to that in

Figure 1. (a, b) SEM images and (c−f) corresponding EDS mappings of PCN-222; (g) PXRD patterns of simulated and as-synthesized PCN-222;
and (h) ultraviolet−visible (UV−vis) diffuse reflectance spectra of H6TCPP and PCN-222.
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Section 2.4. Three parallel experiments were performed at each
concentration.

3. RESULTS AND DISCUSSION
3.1. Characterization of PCN-222. A series of character-

izations were carried out to confirm the structure of PCN-222.
The synthesized PCN-222 exhibited a three-dimensional
hexagonal rod-like structure with a smooth surface and a
scale of micrometers (Figure 1a,b). The scanning electron
microscopy−energy dispersive spectroscopy (SEM-EDS)
mappings of PCN-222 revealed the homogeneous distribution
of the elements C, N, O, and Zr in PCN-222 (Figure 1c−f). As
shown in Figure 1g, the main powder X-ray diffraction
(PXRD) peaks of PCN-222 were 2.48, 4.87, 7.14, and 9.71°.
The PXRD pattern closely matched with the simulation one,
which is also consistent with the experimental one in the
literature.17,47 The porosity of PCN-222 has been measured by
N2 adsorption−desorption experiments at 77 K (Figure S1).
The prepared PCN-222 samples showed typical type IV N2
sorption isotherms and gave a Brunauer−Emmett−Teller
(BET) surface area and total pore volume of 2233 m2 g−1

and 1.652 cm3 g−1, respectively, suggesting their mesoporosity.
In addition, the evaluation of the density functional theory
(DFT) simulation of the N2 sorption curve revealed two types
of pores with pore diameters of 1.3 and 3.2 nm, assigned to the
triangular microchannel and hexagonal mesochannel, respec-
tively (Figure S1, inset). These results proved the successful
preparation of PCN-222. The highly regular porous structure
and high-density channels enable PCN-222 to possess high gas
storage capacity and enrichment capacity of the reaction
substrate. As illustrated in Figure S2, the thermogravimetric
analysis (TGA) curve showed that PCN-222 can maintain
thermal stability up to 415 °C. Such excellent thermal stability
can be attributed to the strong Zr−O coordination bond with
H2TCPP

4− in PCN-222.
Subsequently, we studied the spectral properties of PCN-

222. As shown in Figure 1h, porphyrin exhibits strong
absorption in the 380−450 nm region (Soret band) and
weak absorption in the region of 500−700 nm (Q
band),1,17,48,49 which can also be observed in the UV−vis
diffuse reflectance spectrum (UV−vis DRS) of PCN-222.
However, the Soret band absorption of PCN-222 was red-
shifted in comparison with that of free H6TCPP, which may be
due to the ligand-to-metal charge transfer (LMCT) interaction
between H6TCPP and the Zr−O cluster. It means not only
that PCN-222 has a smaller highest occupied molecular

orbital−lowest unoccupied molecular orbital (HOMO−
LUMO) band gap, which is more favorable for the
photoinduced electron transfer process.29 PCN-222 can also
be easily excited by visible light, which is consistent with the
emission spectrum of the porphyrin ligand (Figure 2a).30 The
attenuated photoluminescence50 intensity (Figure 2a) and the
reduced fluorescence decay lifetime (Figure 2b) of PCN-222
both indicated more efficient photoelectron−hole pair
separation and faster interface charge transfer compared with
H6TCPP.

30,48,51,52 It is well-known that porphyrins are widely
used in the field of photoelectric analysis due to their excellent
photoelectric activity.53,54 However, the PEC properties of
PCN-222 have rarely been studied.

3.2. Analytical Performance of the PEC Probe.
3.2.1. Stability and Selectivity of the PEC Probe. A
prerequisite for highly sensitive PEC detection is the
generation of strong and stable photocurrent signals from the
photoactive electrode. Therefore, the photocurrent response of
the constructed ITO/PCN-222 PEC probe was investigated
under optimal conditions (Section 1 in the Supporting
Information), and the stability of the ITO/PCN-222 electrode
has been investigated first by recording the photocurrent
response. It can be observed in Figure 3a that the photocurrent
signal generated by PCN-222 was approximately three times
higher than that of the free porphyrin ligand at the same molar
concentration, which indicated that the PEC activity was
effectively enhanced when H6TCPP was assembled into the
MOF structure. This is because (a) the smaller HOMO−
LUMO band gap of PCN-222 is more favorable for
photogenerated charge transfer compared to porphyrin
ligands;30 (b) the extended conjugation in the PCN-222
framework facilitates the separation of photogenerated
electron−hole pairs, thereby improving the photoelectric
conversion efficiency; and (c) the larger specific surface area
and three-dimensional porous structure in PCN-222 enrich
dissolved oxygen and reaction substrates, thus improving the
photovoltaic performance.29,30,34 Furthermore, the photo-
current response of the ITO/PCN-222 electrode showed no
significant attenuation after 36 on/off irradiation cycles for 36
min with a relative standard deviation (RSD) of 1.28%. In
addition, the RSD of the photocurrent responses of the six
individual ITO/PCN-222 photoelectrodes was as low as
1.63%. The results reveal that the PEC probe has the perfect
stability, good reproducibility, and potential application
(Figure 3b,c).

Figure 2. (a) Excitation (solid line) and photoluminescence (PL) emissions (dashed line) (λex = 430 nm) of H6TCPP (blue) and PCN-222 (red).
(b) The lifetime decay curves of H6TCPP and PCN-222 monitored at 660 nm under excitation at 430 nm.
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Second, the selectivity of the ITO/PCN-222 electrode as a
PEC probe was investigated by measuring the photocurrent in
HEPES buffer solution (10 mM, pH = 6.8) containing
phosphate and other common species with the same
concentration (1.0 μM) (Figure 3d). Inspiringly, the ΔI of
ITO/PCN-222 electrode toward phosphate was much higher
than that of other substances, and other substances cannot
interfere with the detection of phosphate by the ITO/PCN-
222 electrode when they were mixed together. The results
demonstrated that PCN-222 as the PEC probe possesses
excellent selectivity and anti-interference performance to
phosphate, which may be attributed to the specific and strong
binding between PCN-222 and phosphate.
3.2.2. Sensitive Performance of the PEC Probe. As shown

in Figure 3e, the photocurrent signal increased gradually with
the increase of the phosphate concentration. Additionally, a

linear relationship was found between ΔI and the logarithm of
the phosphate concentration in the range of 0−106 nM, where
ΔI is the difference between the photocurrent before (I0) and
after (I) incubation with phosphate (Figure 3e). The linear
regression equation is ΔI = −0.2649 log C + 0.02585 (R2 =
0.9952) with a limit of detection (LOD) as low as 1.964 nM
(3σ/slope) (Figure 3f). To the best of our knowledge, this is
the probe for phosphate with the lowest LOD, and this is also
the first signal-on PEC probe toward phosphate based on
PCN-222 (Table S1). Moreover, the LOD was far lower than
the detection requirements of the phosphate emission standard
in the aqueous environment (6.4−320 μM),55 that is, the PEC
probe is sufficient to accurately detect phosphate in the
aqueous environment and even in organisms.

3.2.3. Reproducibility, Solvent Adaptability, Long-Term
Stability, and Reusability. Reproducibility is also an

Figure 3. (a) Photocurrent responses of H6TCPP and PCN-222 in 10 mM HEPES buffer containing 0.01 mM DA at a biased potential of 0.0 V vs
Ag/AgCl. (b) Stability and reproducibility test in a 10 mM HEPES electrolyte under repeated on/off cycles. (c) Reproducibility of the ITO/PCN-
222 electrode. (d) Selectivity and anti-interference of the ITO/PCN-222 electrode to phosphate and different interferers (the detection
concentration was 1.0 μM). (e) Photocurrent response and (f) linear fitting of ITO/PCN-222 to different concentrations of phosphate, (a−g: 0,
10, 102, 103, 104, 105, 106 nM).
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indispensable indicator for probes. The photocurrent re-
sponses of six prepared ITO/PCN-222 in detecting the same
concentration of phosphate are shown in Figure S4a. The
photocurrent signal deviations among six samples were very
small, and the RSD for detecting 104 nM phosphate was 3.52%,
which proves the good reproducibility of the proposed probe.
In addition, the PEC probes prepared from PCN-222 after
incubation in ethanol, acetone, DMF, and acetonitrile for 30
min showed good solvent adaptability. They can retain the
original signal response (Figure S4b) when the same
concentration of phosphate was detected. As expected, the
response signal intensity of the probe can retain almost the
initial value after detecting the same concentration of
phosphate when the probe has been stored at 4 °C for 20
days (Figure S4c). In addition, the reusability of this PEC
probe was also investigated by photocurrent testing. After 10
min of incubation in HEPES (10 mM, pH = 6.8) solution
containing 15.0 μM Eu3+, the photocurrent response of the
PEC probe is shown in Figure S4d. More than 85% of the
initial response can be observed after four repetitions, based on
the strong coordination of Eu3+ with phosphate to regenerate
the probe. These results demonstrate the excellent reprodu-
cibility, solvent adaptability, long-term stability, and reusability
of the proposed PEC probe. Therefore, the probe should have
a good application prospect.
3.3. Application of the PEC Probe in Real Water

Samples. The practical application of the proposed PEC
probe was performed in different spiked water samples (i.e., tap
and drinking water). As listed in Table S2, the recoveries of
spiked samples ranged from 96.86 to 102.87% with ∼2.0%
RSD. These results showed that the proposed PEC probe can

be used to detect phosphate in real water samples with
excellent selectivity, accuracy, and reliability.

3.4. PEC Sensing Mechanism for Phosphate Detec-
tion. 3.4.1. Study on the Interaction between PCN-222 and
Phosphate. First, the ITO/H6TCPP electrode was prepared
by the same method, and the PEC detection of phosphate was
performed as the control experiment. The results shown in
Figure S5 indicated that the ITO/H6TCPP-modified electrode
did not respond to the phosphate. Moreover, the P element
was homogeneously distributed as the Zr element in the
skeleton (Figure S6d,e), indicating an ideal binding capacity of
PCN-222 toward phosphate. Interestingly, the PXRD patterns
of PCN-222 before and after phosphate detection revealed that
the original skeleton structure was still preserved (Figure S7),
which confirmed the good stability of the PCN-222 frame
throughout the detection process.
Then, Fourier transform infrared spectroscopy (FT-IR) and

X-ray photoelectron spectroscopy (XPS) were carried out to
further explore the interaction between PCN-222 and
phosphate.
As shown in Figure S8, the strong peak at 3421 cm−1 in FT-

IR spectra should correspond to the ν(OH) stretching
vibration of the carboxyl and water molecules for the original
PCN-222. The characteristic peaks at 1599 and 1382 cm−1

were attributed to the νas(COO) and νs(COO) vibrations of
the H6TCPP ligand, respectively, and the characteristic peak
near 1544 cm−1 was attributed to the CC vibration peak of
aromatic rings.1,56,57 The peaks in the range of 800−600 cm−1

were attributed to Zr−O2 in the longitudinal and transverse
modes.57,58

After phosphate detection, it was observed that the
characteristic peak of phosphate appeared at 1100−890

Figure 4. (a) XPS survey scans and the high-resolution XPS spectra of (b) P 2p, (c) Zr 3d, and (d) O 1s for PCN-222 and PCN-222-phosphate.
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cm−1.1,4,55 Among them, there were strong absorption peaks at
1100 and 1016 cm−1, suggesting the formation of the PO
and P−OH bonds, respectively. The shoulder peak at 968
cm−1 attributed to the P−O−Zr bond was red-shifted
compared to that of the single phosphate,4,56 demonstrating
that the Zr−OH group in PCN-222 may specifically bind to
phosphate through the formation of a Zr−O−P coordination
bond.56

The XPS spectra of PCN-222 before and after phosphate
detection are shown in Figure 4. Except for C, N, O, and Zr
elements, the new P 2p peak at 133.9 eV can be observed in
the spectra (Figure 4a,b), which indicated that the phosphate
was successfully bound to the PCN-222 framework.29,56

Moreover, in the Zr 3d spectra, two peaks at 182.9 and
185.3 eV (corresponding to Zr 3d5/2 and Zr 3d3/2,
respectively) were derived from the coordination between
Zr−O clusters and carboxylic groups of the porphyrin
ligand.55,56,59 They shifted to 183.1 and 185.5 eV, respectively,
after binding with phosphate, due to the partial loss of Zr 3d
charge density caused by the combination of the strong
electronegative P−O bonds (Figure 4c).55,60 Meanwhile, the O
1s spectra can be divided into four peaks (Figure 4d), which
might be ascribed to O in Zr−O−Zr (530.6 eV), PO and
Zr−O−P (531.9 eV), P−O−H (532.6 eV), and O−CO
(533.7 eV).55−57 The above-mentioned analyses indicated a
strong complexing effect between PCN-222 and phosphate,
which was consistent with the FT-IR results.

3.4.2. Mechanism of Phosphate-Induced PEC Signal
Enhancement. There was no obvious change in the surface
morphology of PCN-222 before and after phosphate detection
(Figure S6a−c). Therefore, the change of photocurrent was
not due to the corrosion of the electrode surface. To further
understand the mechanism of photoelectric conversion by the
ITO/PCN-222 electrode, more controls were investigated. It
can be observed from Figure S9 that the photocurrent of the
ITO/PCN-222 electrode increased significantly with the
addition of O2 in the electrolyte solution, demonstrating that
O2 plays a key role in the cathodic photocurrent reaction of the
ITO/PCN-222 electrode. Because the electrons generated by
the photoexcitation are transferring from the valence band
(VB) to the conduction band (CB) in PCN-222,61 they can
reduce the dissolved O2 to produce superoxide radicals (O2

•−)
and then facilitate the generation of cathode reduction
current.59 In short, the dissolved O2 can receive electrons
from PCN-222 to generate O2

•−, during photoexcitation.
Subsequently, electrochemical impedance spectroscopy

(EIS), UV−vis DRS, and Mott−Schottky curves were used
to explore the mechanism of PEC signal enhancement after
phosphate binding (Section 3 in the Supporting Information).
As shown in Figure 5a, the radius of the impedance curve of
ITO/PCN-222 after combination of phosphate was signifi-
cantly reduced, indicating smaller charge transfer resistance
and faster electron mobility.62

Figure 5. (a) Nyquist plots, (b) Tauc plots, and (c) Mott−Schottky plots of ITO/PCN-222 before and after PEC detection of phosphate.

Figure 6. Mechanism of photocurrent enhancement through the ITO/PCN-222 electrode combined with phosphate (E/V vs NHE).
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It is well-known that the physical parameters of the
semiconductor, such as forbidden bandwidth, the position of
the band gap, and the carrier concentration, are important
factors for the occurrence of PEC reactions.59 The Tauc plot
obtained from the UV−vis DRS is usually used to determine
the band gap energy of a semiconductor (Section 3 (I) in the
Supporting Information).63 As shown in Figure 5b, the band
gap of the PCN-222 (1.74 eV)30 was reduced to 1.70 eV when
it was combined with phosphate, demonstrating the improved
light absorption capacity of the material and the enhanced
photocurrent.
In addition to the forbidden bandwidth, the effects of the

ITO/PCN-222 band gap position and conductive type on
photocurrent variation were also investigated. Mott−Schottky
measurements of PCN-222 before and after phosphate
detection were performed at a frequency of 500 Hz (Figure
5c). The positive slopes of Mott−Schottky plots for both
electrodes were consistent with the typical n-type semi-
conductor. The flat band potential (Vfb) of the ITO/PCN-
222 electrode calculated according to the Mott−Schottky
diagram shifts from −0.50 V (vs NHE) to −0.35 V (vs NHE)
after binding phosphate (Figure 5c). According to the carrier
density NA formula, the significantly increased NA indicated
accelerated charge transfer and enhanced PEC signal (Figure
6) (Section 3 (II, III) in the Supporting Information).62

Moreover, the energy band bends upward when the n-type
semiconductor is in contact with the electrolyte based on the
principle of semiconductor electrochemistry.59 As shown in
Figure 6, a “built-in” electric field was formed at the interface
between the semiconductor and the electrolyte, and the
direction of the electric field was from the electrode to the
electrolyte, which may hinder the transfer of electrons from the
electrode surface to the electrolyte. However, the generation of
a photocurrent signal indicated that a certain amount of
electrons could be transferred across the barrier to the oxygen
in the electrolyte to form a cathode photocurrent. Taking into
account the existence of the “built-in” electric field, the
narrower its space charge region (SCR) was, the easier it was
for the electrons to cross the barrier and transfer to oxygen and
thus, the higher the photocurrent was.59 As shown in Figure 6,
since the bias voltages of ITO/PCN-222 and ITO/PCN-222-
phosphate were set to be 0.0 V vs Ag/AgCl (i.e., −0.2 V vs
NHE) during the measurement, the energy band bending
degree of ITO/PCN-222 was 0.70 V, greater than the 0.55 V
of PCN-222-phosphate. Therefore, it can be concluded that
the thickness of the SCR formed by the modified electrode
becomes narrower under the action of phosphate.
For the mechanism study, the narrower space charge layer

facilitated the transfer of more electrons through the interfacial
electric field to the electrolyte to reduce oxygen at a redox
potential of −0.33 V (vs NHE) (Figure 6).64 Thus, the cathode
photocurrent detected through the probe was due to the
reduction of O2 by photoinduced electrons. Phosphate binding
shortens the distance of the SCR while reducing the
bandwidth, makes it easier for the photogenerated electrons
to transfer, and thus achieves an increased photocurrent.

4. CONCLUSIONS
In summary, an n-type metal−organic framework, PCN-222,
was first and successfully developed as a simple and efficient
“signal-on” photoelectrochemical probe for the detection of
phosphates, due to its good electrical conductivity, special pore
structure, and strong Zr−O−P affinity. The probe showed

excellent selectivity, sensitivity, and stability, and the detection
limit was as low as 1.964 nM, which was below the
requirement of 6.4−320 μM for the detection of phosphate
in the aqueous environment. A series of electrochemical and
spectroscopic studies have proved that phosphate can bind to
the ITO/PCN-222 electrode, which shortens the distance of
the SCR while reducing the bandwidth and thus facilitates the
transfer of photogenerated electrons across the energy band
barrier to reduce O2 in the electrolyte, producing an enhanced
cathodic photocurrent signal. Moreover, the application of this
PEC probe was well-validated in real water samples by the
spiking method. This work provides a simple, rapid, and
effective method for the detection of trace phosphate in water.
At present, we are trying to use this probe for the detection of
phosphate in biological systems. It may open up new avenues
for further applications of MOF materials in environmental
analysis and biomedicine.
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