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PUBLIC SUMMARY
= MOFs have garnered multi-disciplinary attention due to their unique inherent properties

= Various synthetic strategies of MOFs-derived hollow porous materials are summarized

= Emerging applications of MOFs-derived hollow porous materials are reviewed
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Metal-organic frameworks (MOFs) have garnered multidisciplinary attention
due to their structural tailorability, controlled pore size, and physicochemical
functions, and their inherent properties can be exploited by applying them as
precursors and/or templates for fabricating derived hollow porous nanoma-
terials. The fascinating, functional properties and applications of MOF-
derived hollow porous materials primarily lie in their chemical composition,
hollow character, and unique porous structure. Herein, a comprehensive over-
view of the synthetic strategies and emerging applications of hollow porous
materials derived from MOF-based templates and/or precursors is given.
Based on the role of MOFs in the preparation of hollow porous materials,
the synthetic strategies are described in detail, including (1) MOFs as remov-
able templates, (2) MOF nanocrystals as both self-sacrificing templates and
precursors, (3) MOF@secondary-component core-shell composites as pre-
cursors, and (4) hollow MOF nanocrystals and their composites as precur-
sors. Subsequently, the applications of these hollow porous materials for
chemical catalysis, electrocatalysis, energy storage and conversion, and envi-
ronmental management are presented. Finally, a perspective on the research
challenges and future opportunities and prospects for MOF-derived hollow
materials is provided.

INTRODUCTION

Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs),
which consist of inorganic metal nodes linked by organic linkers via coordination
bonds, represent a new class of crystalline porous materials. During the past
few decades, MOF materials have allowed extraordinary achievements in both
the synthesis of novel nanostructures and a wide variety of potential applications,
such as energy storage and conversion, sensing, catalytic reaction, environmental
management, and so on. MOFs have highly ordered crystalline framework struc-
tures, and these structures are durable enough to remove the contained guest spe-
cies and yield permanent pores. In particular, through the rational design and/or
control of organic ligands, metal nodes, and synthesis environment, the structure
and related peculiarity of MOFs can be conveniently adjusted and modified to
meet specific requirements. These attractive advantages are particular to MOFs
and not easily accessible in most of the other traditional porous nanomaterials.

Due to their excellent intrinsic attributes, MOFs can be used as precursors or
templates to fabricate MOF-derived secondary hollow porous nanomaterials
(HPMSs): metal carbides, metal oxides, metal sulfides, layered double hydroxides,
porous carbon materials, and their hybrid composites. MOF-derived porous nano-
materials have also played a significant role in photocatalysis, energy storage and
conversion, and particularly electrocatalysis, owing to their superior attributes,
such as large specific surface area, micro- or mesoporosity for efficient electron
and mass transport during the reaction, inherited structural versatility, high toler-
ance to acid/alkaline environments, and electrical conductivity, as well as diverse
chemical components.

Among these MOF-derived hollow nanomaterials, discrete, hollow structures
have garnered considerable attention. In most cases, the synthesis of MOF-
derived HPMs essentially relies on a decomposition of the MOF or its composites
under a certain condition or chemical reaction with desirable reagents: (1) hollow
SiO, derived from a secondary constituent of MOF@shell composite, (2) hollow
porous carbon materials derived from the organic components of the MOF and
its shell or guest molecules, and (3) hollow metal oxides, sulfides, carbides, sup-
ported MNPs, etc., derived from the metallic components of the MOF or MOF

composite. Traditional synthetic methods for HPMs require a hard template,
for example, SiO,, and polystyrene (PS), while a significant drawback is that harsh
conditions are required for template removal. Compared with the traditional hard
template method, the conditions of preparing hollow porous materials from
MOFs as a template and precursor system are mild, and there is no need to re-
move the template. Furthermore, in contrast to the traditional molecular sieve
and amorphous porous materials, hollow nanomaterials derived from MOFs
demonstrate numerous advantages, including uniform hollow morphology and
chemical constituents, tunable distribution of chemical and structural composi-
tions, and tunable porosity. Benefiting from these attributes, MOF-derived hollow
nanomaterials exhibit excellent performance in chemical catalysis, electrocataly-
sis, energy storage and conversion, and other applications.

Although several reviews have summarized the MOF-derived hollow nanoma-
terials and their potential applications,” " most of these review articles are mainly
focused on MOF-derived hollow materials and their applications in energy stor-
age and conversion. Up to now, a comprehensive summary of the synthetic stra-
tegies and emerging applications of hollow porous materials derived from MOF-
based templates and/or precursors is lacking in the literature. In this context, we
aim to provide a systematic and detailed overview of the most recent achieve-
ments of MOFs as templates and/or precursors for fabricating hollow nanoma-
terials and their application in chemical catalysis, electrocatalysis, environmental
management, energy storage, and energy conversions. Finally, this review con-
cludes with some personal insights that we hope open a broad new avenue for
future directions in this attractive research field.

DESIGN STRATEGIES FOR MOF-DERIVED HOLLOW POROUS MATERIALS
For this part, we will provide various detailed synthetic strategies for fabricating

HPMs, such as hollow porous carbons and their composites, hollow layered dou-

ble hydroxides, hollow metal-based compounds, and their composites (Table S1).

MOF nanocrystals as removable templates

Usually, the sacrificial template controls the size and morphology of the
hollow inorganic nanostructures. He and co-workers proposed a synthetic route
for Si0,-based hollow nanocrystals with tunable components.'® As shown in Fig-
ure 1A, a layer of SiO, was uniformly coated on ZIF nanocrystals from a soluble
TEOS precursor through the Stober method. This produces a ZIF-8@SiO, core-
shell material. Subsequently, hollow SiO,-based materials were obtained from
the ZIF-8@SiO, core-shell composite by different ways of treatment: (1) a
ZnO@SIO, yolk-shell composite was formed by calcination in the air or (2) a
ZnO@SIO, yolk-shell composite and a hollow SiO, polyhedron were formed by
thermal treatment in acidic solution at 100°C for 2 and 24 h, respectively. Inspired
by the above research, we proposed a route to prepare hollow TiO, using ZIF
nanocrystals as a removable template and gave rare examples of hollow cubic
and polyhedral morphologies (Figure 1B). It was particularly interesting to see
that the surface of ZIF-8 can promote the growth of TiO, coatings.' The ZIF-8
core could be removed completely and quickly without affecting the integrity of
the TiO, shells. The sacrificial ZIF-8 template controls the shape and size of
the obtained hollow TiO, structure. These TiO, materials demonstrated excep-
tional textural properties. Upon using ZIF-8 nanocrystals injected with Pt nanopar-
ticles (NPs) as templates, the Pt NPs were successfully encapsulated into the
hollow TiO, cubes.'" Brinker and colleagues also proposed a novel concept for
the functionalization of the surface of MOFs based on the direct coordination
of a phenolic-inspired lipid molecule, DPGG (Figure 1C). Consequentially,
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Figure 1. Synthesis of hollow nanocrystals (A and B)
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of (A) hollow SiO,-based structures'® and (B) hollow
TiOy-based structures.'' (C) Schematic illustration of
the surface functionalization of MOF particles by a
phase transfer reaction.'” Copyright Royal Society of
Chemistry, American Chemical Society, and John
Wiley & Sons.
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MIL-88 nanocrystals and UiO-66 were also used as a removable template for the
production of the hollow polymer.'?

Taken together, when an MOF is used as a template to fabricate hollow mate-
rials, the shape and size of the obtained hollow structures are controlled by the
sacrificial MOF template. And the other advantage is that the MOF template
can be completely and rapidly eliminated without affecting the integrity of the hol-
low shells.

MOF nanocrystals as both self-sacrificing templates and precursors

In addition to the removable templates, MOF nanocrystals can be used as both
self-sacrificing templates and precursors for fabricating hollow nanostructures.
Many approaches have been developed to synthesize MOF derivatives, for
instance, hollow metal hydroxides, metal sulfides, metal oxides, metal phos-
phides, hollow carbon matrixes, and so on.'*'® ZIF-8 (zn) and ZIF-67 (Co)
were applied as self-sacrificial template and precursor to prepare M-Co-LDH
(M = Mg, Co, Ni) nanocages with hollow structures (Figure STA)."* Control of
the simultaneous reactions, the precipitation of the shells, and the template
etching is extremely crucial to the preparation of perfect nanocages. Subse-
quently, similar synthesis strategies were used for producing other LDH and
metal hydroxide nanocages, such as Mg-Co LDH,"®'* Ni-Co LDH,'* Co®*-Co®*
LDH,"” Ni-Fe LDH,'® and a series of metal hydroxides, including Co-OH,
NiCo-OH, Ni,Co-Mn;-OH, Ni;Co-Mn,-OH, NiCoMn-OH-AD, CoMn-OH, and
FeOOH@NI(OH),.">'® The process of MOF-derived hollow LDH could be
observed by in situ technical characterization: etching of the NPs and growth
of LDHs on the NP surfaces.’” The conversion process of ZIF-8 nanocubes
and ZIF-8 rhombic dodecahedrons into LDH nanocages is observed by in situ
transmission electron microscopy (TEM). Conversion of ZIF-67@ZIF-8 core-
shells into “shell-in-shell” LDH nanocages is demonstrated in Figures S1B
and S1C.

The metal components of the MOF template are known to be converted into
metal oxide by oxidation and pyrolysis in an air atmosphere. Thus, MOF nanoma-
terials are very suitable as sacrificial templates and precursors for producing
various hollow metal oxides. Hollow Co30, tetrahedrons were successfully syn-
thesized through the thermolysis of [CosL,(TPT),-xG], (G = guest molecules) at
773 K for 4 h in the air.” Guo et al. fabricated hollow Fe,03 nanostructures with

different metals. To achieve this target, it is
necessary to dope the secondary metal compo-
nents into the precursor prior to thermolysis.
Guo et al. reported a simple and novel method
to synthesize multilayer CUO@NIO with hollow
a. " spheres by using Ni-Co-BTC MOF as a sacrifice
—= template and precursor (Figure S1E).”° The
ZIF-67/Ni-Co LDH vyolk-shell nanostructure
was prepared using a chemical etching ZIF-
67 nanocrystalline surface in a methanol
solution containing Ni(NOs),. Subsequently, the
Co304@NiCo,0,4 core-shell structure nanocages
were formed from ZIF-67/Ni-Co LDH by thermal
treatment under air conditions.?” Those synthetic approaches were further
applied to fabricate other hollow multicomponent metal oxides, such as
Ni,Cos_«04_, nanocages,”® Ni0/ZnO hollow spheres,”” hollow porous CuO-
CuCo,0,4 dodecahedrons,*° Zn0/ZnCo,0, hollow core-shell nanocages,”' and
hollow NiQ,/Co30,4.°” Guan et al. utilized a practical and versatile strategy to fabri-
cate multicomponent metal oxides, including Co-Ni, Co-Mn, Mn-Ni, Zn-Mn, and
Co-Mn-Ni structures (Figures 2A and 2B).*

To prepare hollow porous carbon, MOF precursors are usually pyrolyzed un-
der an Ar or N, atmosphere, and metal species will experience evaporation
and/or subsequent leaching in the pyrolysis process. For example, Zhang
et al. utilized ZIF-8 as a sacrificial template and precursor for fabricating a hol-
low carbon matrix (Figure 2C).* First, the inner parts of the ZIF-8 template
were etched with a tannic acid solution, and then hollow ZIF-8 was treated
at 873 K under an inert atmosphere, with subsequently etching of the obtained
sample with acid solution to eliminate the remaining Zn species, and the hol-
low carbon matrix was acquired. In addition, Wang et al. proposed a host-
guest strategy to fabricate a hollow N-doped porous carbon electrocatalyst
with Fe-Co dual sites.™

Reasonable introduction of other species into MOFs and then pyrolysis can
provide an excellent opportunity to manufacture the targeted hollow material
with the desired compositions. For example, Wu et al. proposed an MOF-assis-
ted strategy for synthesizing MoC, NPs confined within hollow nano-octahe-
drons of porous carbon (Figure 2D).*® They first prepared [Cun(BTC)4/s(Hy.
0),lg[HaPM01,040] Nanocrystals and then pyrolyzed this sample at 1,073 K
to prepare MoC,-Cu through an in situ carbonization process involving the
Cu-MOF host framework and the guest H3PMo1,049 components. FeCls solu-
tion is used to selectively etch the Cu species to generate hollow MoC, octa-
hedrons (Figures 2E and 2F). Many research groups extended the fabrication
method to other hollow nanostructures, such as hollow metal sulfides, metal
selenides, and metal phosphides, that were synthesized by using MOF nano-
crystals as both sacrificial templates and precursors.

Metal-phenolic
coordination

MOF@secondary-component core-shell composites as precursors
The growth of MOF@secondary-component core-shell structures is very
popular for fabricating MOF-derived hollow porous materials. Hu et al.

2 The Innovation 3(5): 100281, September 13, 2022

www.cell.com/the-innovation


http://www.thennovation.org
http://www.thennovation.org

Figure 2. Schematic illustrations of strategies for
using MOF nanocrystals as sacrificial templates
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Similarly, the synthetic route toward an N, P,
S-co-doped carbon shell (NPS-HCS) was re-
ported.>® They first prepared ZIF-67 nanocrystals
and then deposited a cross-linked PZS layer on
the surface of ZIF-67 to obtain a ZIF-67@PZS
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core-shell structure (Figure 3C). After heat treat-
ment in Ar and acid etching, NPS-HCSs were ob-
tained (Figure 3D). Inspired by the study, Fe single
atoms supported on an N, P, S-co-doped hollow
carbon polyhedron were fabricated. They re-
vealed that the long-range interaction of the
active metal center with sulfur and phosphorus
facilitated the formation of a hollow structure
and improved catalytic performance.*®
Moreover, Liu et al. fabricated NC@Co-NGC
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utilized phenolic acids as surface functionalization and etching reagents to
prepare hollow MOFs (Figure 3A).®” Metal-phenolic networks (MPNs) were
formed on the MOF surfaces by the coordination of phenolic acid and metal
ions and finally functionalized the surface of the resulting hollow MOFs. As a
seminal study, we proposed the synthetic routes toward the first N-HPC
capsule, and then the N-HPC capsules encapsulated NPs with tunable com-
ponents employing ZIF-8 nanocrystals as a template (Figure 3B).*® First,
ZIF-8@K-TA was prepared by coating the metal-phenoclic coordination
(K-TA) as an auxiliary material on the surface of the ZIF-8 crystal. Afterward,
ZIF-8@K-TA was pyrolyzed under an Ar atmosphere at 900°C. It is worth
noting that this process converted the organic components of ZIF-8@K-
TA into hollow microcapsules with the shape of the ZIF-8 templates. During
the pyrolysis process, the Zn species vaporized and escaped from the ma-
terial to form N-HPC capsules. Interestingly, post-synthetic ion exchange
of the K" ions in the K-TA shell by Co(ll) or Ni(ll) could be realized by facilely
immersing ZIF-8@K-TA in a methanolic solution of Co(NOz), or Ni(NOz),,
respectively. Subsequently, monometallic Co or Ni NPs encapsulated in
N-HPC capsules could be achieved by heating ZIF-8@Co-TA or ZIF-8@Ni-
TA, respectively, under an Ar atmosphere. We further extended this strategy
to synthesize supported multicomponent metal NPs. The heating of ZIF-8/
Pt@M-TA or ZIF-8/Pt@Mmix-TA results in N-HPC capsules with Pt-based al-
loyed NPs embedded in the capsule walls. This approach can be extended to
prepare NPs composed of four different metals.*" Inspired by the above suc-
cesses, we subsequently fabricated a series of atomically dispersed metal
catalyst-decorated hollow carbon capsules, including H-Fe-N,-C, H-Co-N,-
C, H-FeCo-N,-C, H-FeNi-N,-C, H-FeCoNi-N,-C, etc.*?

L s s

40 50 60 70 80

nanocages via pyrolysis of a ZIF-8@ZIF-67
Cu core-shell composite.”” The core-shell compos-
ites were originally obtained by coating the
epitaxial ZIF-67 shell on the surface of the ZIF-8
core (Figure 3E). After pyrolysis under N, atmo-
sphere and subsequent etching treatment, dou-
ble-shelled NC@Co-NGC nanocages with sur-
face-anchored carbon nanotubes (CNTs) were
obtained. It should be noted that the formation
of hollow nanostructures can be attributed to sur-
face-stabilized shrinkage of core-shell ZIF-
8@ZIF-67 nanocrystals at high temperatures.
Similarly, Pan and colleagues used core-shell
ZIF-8@ZIF-67 composites to prepare hollow composites of CoP NPs embedded
in N-doped CNTs through a continuous pyrolysis-oxidation-phosphorylation
process.**

In addition, various hollow carbon
metal-based materials, including metals,*> metal oxides,*® metal sulfides,
metal phosphides,”” and metal selenides,’® can be easily produced through
the reaction of MOF@secondary-component templates with the corre-
sponding thermolysis.

r] MoC S|mulated

26 (°)

3439 and hollow carbon-supported

Hollow MOF nanocrystals and their composites as precursors

Similar to the previously mentioned design strategy, direct thermolysis of hol-
low MOFs is a facile route to fabricate functional hollow porous materials. Zou
and co-workers™ fabricated NiO/Ni/graphene composites with hierarchical hol-
low structure through annealing of Ni-MOF with hierarchical hollow structure. Fig-
ure 4A shows that hierarchical hollow Ni-MOF nanocrystals were prepared with a
uniform diameter. Then, the pyrolysis of the hollow MOF nanocrystals under a N,
gas environment resulted in Ni/graphene core-shell composites. After further an-
nealing treatment under air, the final sample NiO/Ni/graphene composites were
acquired.*® Moreover, hollow ZnO/C composites,®® NiO/Ni@C composites,®
767-C0304/C-4, and 79-Co304/C-4°° were also synthesized by a similar process.
Similarly, Yu et al.>° fabricated hierarchical CoS, hollow prisms by using ZIF-67 as
a precursor (Figure 4B). Nanosized CoS, bubble-like subunits were prepared via
sulfidation of ZIF-67 hollow prisms with thioacetamide in ethanol solution. During
the sulfidation process, Co®* cations in the ZIF-67 were converted into hollow
CoS, nanocrystals. After pyrolysis under the N, atmosphere, the hierarchical
CoS, with multistage hollow interiors was acquired.”® Moreover, Zhang et al.
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(C) N, P, S-doped carbon shells,*

also employed Zn/Ni-MOF-5 and nanocubes as the precursor to prepare Zn/Ni-
MOF-2 nanosheet with hierarchical hollow nanocubes.™

External templates can also be used to construct hollow porous materials
derived from MOF nanocrystals. Su and co-workers reported a multicavity hollow
Au@ZIF-8 nanoreactor (Figure 4C) produced via the exterior template method.”
As depicted in Figure 4D, silica was employed as the template source coating on
the surface of Au NPs to produce Au NP@silica core-shell composites. Subse-

and (E) double-shelled NC@Co-NGC nanocages.“’ (D) TEM image of NPS-HCS.*® Copyright John Wiley & Sons and American Chemical Society.

quently, the growth of ZIF-8 led to packaging of multiple Au NP@silica particles
embedded in its surface to form “raisin bun"like structures. Then, multicavity hol-
low Au NP@ZIF-8 nanoreactors were formed after etching the silica. The hollow
products feature intrinsic monodispersed micropores and introduced macro-
pores, and each microvoid unit structure has only one Au NP inside.
NP@MOF®” and yolk-shell nanocrystal@ZIF-8°% were also synthesized with a
similar process.
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(E) Periodic hollow SOM-ZIF-8.%%(F) SEM images of SOM-ZIF-8 were taken from four different directions.®” Copyright John Wiley & Sons and American Chemical Society.

Moreover, hollow MOF nanocrystals and their composites have also been
applied for synthesizing periodic hollow porous MOF structures. For instance,™
3D hollow SOM-ZIF-8 with oriented and ordered macro-micropores were ac-
quired by packaging ZIF-8 and PS spheres (PSs) as a well-assembled “precur-
sor@PS" template (Figure 4E). Specifically, PSs were assembled into a highly or-
dered 3D opal structure, and then ZIF-8 precursors filled the PS monolith
interstices to form “precursor@PS." It was immersed in the CH30OH and
NH3-H,0 solution to reach a balanced process between the growth of the
ZIF-8 crystal and the removal of the PSs. As a result, the highly oriented and or-
dered macropores SOM-ZIF-8 were obtained (Figure 4F). Subsequently, Guo et al.
synthesized Zn-N-HOPCPs with ordered pores through confined growth and py-
rolysis of ZIF-8 crystalline template voids.>® As shown in Figure S2A, in the prep-
aration of ZIF-8, SiO, CCT was added for the preparation of SiO,-CCT@ZIF-8 pre-
cursors. The obtained SiO,-CCT@ZIF-8 was pyrolyzed under N, conditions and
then SiO,-CCT was removed in T M NaOH to obtain the final products.

In addition, multishelled hollow MOFs can be fabricated by controlling crystal
production and etching or self-assembly strategies. As shown in Figure S2B,
Liu et al. developed a rational method to prepare single-, double-, and triple-shelled
hollow MIL-101 with single-crystalline shells by step-by-step crystal growth and
subsequent etching processes.®® The cavity size and shell thickness of each layer
can be tailored by rational regulation of MOF nucleation and crystallization. Choe
and colleagues demonstrated the process of a solid MOP transformed to a hol-
low MOF with controlled layers of shells through self-assembly (Figure S2C).°’
First, they immersed solid UMOM-1 (MOP) in DABCO solution to generate a
core-shell structure. The external surface of the MOP crystal was coordinated
with the linker; thus, the center of the MOP can be retained even if the reaction
were stopped halfway. Due to the difference in solubility, the core was selectively
dissolved in methanol solution and formed a single-crystal hollow MOF with a sin-
gle shell. By repeating the above process, a single-crystal hollow MOF with mul-
tiple shell layers can be obtained. Similarly, Liu and co-workers®? synthesized a
multishelled ZIF-8 by selectively dissociating ZIF-67 from the multilayered ZIF-

67@ZIF-8 (Figure S2D). The shell number of hollow ZIF-8 can be tuned by control-
ling the epitaxial layer-by-layer overgrowth of ZIF-8 and ZIF-67. Furthermore, the
interactions between different guests can also be tuned by precisely immobilizing
them in MOF shells or by encapsulating them in cavities between MOF shells.®?

APPLICATIONS OF MOF NANOCRYSTAL-DERIVED HOLLOW POROUS
MATERIALS
Chemical catalysis

Chemical catalysis is a widespread phenomenon and a central topic for mod-
ern industry. To date, tremendous efforts have been committed to preparing and
constructing excellent chemical catalysts. Recently, various novel MOF-derivative
constructions have been reported and used in selective hydrogenation, goal-
directed oxidation, CO, reduction reaction, and so on.®®

Selective hydrogenation. Hollow MOF composites with noble metals
possess remarkable selectivity in hydrogenation reactions. Tsung and co-
workers fabricated Pd on ZIF-8, yolk-shell Pd@ZIF-8, and core-shell Pd@ZIF-8
by utilizing Pd nanocrystals and hollow ZIF-8.°% Through the gas-phase hydroge-
nation reaction of ethylene, cyclohexene, and cyclooctene, the molecular size
selectivity of the prepared catalysts was studied. Experimental results revealed
that all of the catalysts demonstrated superior activity for ethylene hydrogenation,
while only the Pd on the ZIF-8 catalyst exhibited excellent catalytic performance
for the cyclooctene. This is because ethylene molecules (2.5 A) can diffuse
through the pore size (3.4 A) of the ZIF-8 shell, while cycloalkene molecules
(5.5 A) are much larger than the pore size of the ZIF-8 shell (Figure 5A). Similarly,
Yang et al. fabricated hollow Pd@ZIF-8 nanosphere catalysts with different thick-
nesses and studied their selectivity in liquid-phase hydrogenation.®* As shown in
Figure 5B, when Pd@ZIF-8 was applied to the hydrogenation reactions of
T-hexene, trans-stilbene, and tetrastyrene, experimental results showed that the
smaller the size of the reactant, the higher the conversion. Moreover, PdA@ZIF-8
catalysts with thicker shells (Pd@ZIF-8(S)) possessed lower conversion effi-
ciency. A similar conclusion was obtained when void@HKUST-1/Pd@ZIF-8
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Figure 5. The application of MOF-derived hollow porous materials in chemical catalysis (A) The molecular sizes of ethylene, cyclohexene, cyclooctene, and the ZIF-8 pore aper‘(ure.58

(B) Catalytic performance of Pd@ZIF-8 nanospheres for the liquid-phase hydrogenation of 1-hexene, trans-stilbene, and tetraphen%/Ietherne with different ZIF-8 shell thicknesses.®
Benzaldehyde conversion over various samples as a function of reaction time. (D) Recyclability tests of SOM-ZIF-8 and PH-ZIF-8.°
(F) TEM image of HPC-800.°° Copyright John Wiley & Sons, American Chemical Society, and Royal Society of Chemistry.

at different reaction temperatures.®®

was used as a hydrogenation reaction catalyst®” Moreover, hollow
PtAUDNP@HKUST-1 petalous heterostructures also exhibited excellent perfor-
mance in the hydrogenation of olefin.>” Noble-metal catalysts exhibited remark-
able activity in selective hydrogenation, but the high cost limited their practical
application in the hydrogenation reaction. One strategy is to combine noble
metals with low-cost non-noble metals, which can reduce costs and maintain ac-
tivity and selectivity. Analogously, yolk-shell PdCu@Fe'"-MOF-5,° yolk-shell (PTA)
@CdCu@MOF-5(Felll),*® and hollow Pd@Zn-Co ZIF’® exhibited excellent selec-
tive hydrogenation performance.

Goal-directed oxidation. MOF-derived hollow porous materials have demon-
strated remarkable performance in goal-directed oxidation of organic matters.
Shen et al. reported a single-crystalline SOM-ZIF-8 with the 3D ordering of
macro-micropores.®” They investigated the catalytic performance of SOM-ZIF-
8 in the Knoevenagel reaction of benzaldehydes and malononitrile. As shown
in Figures 5C and 5D, SOM-ZIF-8 catalysts possessed significantly improved per-
formance compared with the other catalysts and exhibited superior structural
stability and enhanced recyclability. Doping heteroatoms can significantly
improve the catalytic ability of hollow porous materials in various organic reac-
tions. MOF-derived hollow Coz0,4 polyhedrons exhibited superior catalytic perfor-
mance and excellent stability, and the complete conversion was up to 100% for
toluene oxidation.” MOF-derived yolk-shell Co@C-N demonstrated prominently
improved catalytic performance in the aqueous oxidation of alcohols while
yielding >99% conversion. The enhanced catalytic performance is due to the
unique yolk-shell structure, which can accelerate the transfer rate of reactants/
products and the synergistic effect between the Co NPs and the N-doped carbon
nanosheet.”? Similarly, both MOF-derived hollow Fe-Co nanocatalyst”® and hol-
low yolk-shell Co@CN catalyst’* also afforded high productivity and excellent
selectivity for oxidation of HMF. In addition, MOF derivatives can be used as cat-
alysts for CO, conversion. Dai and co-workers fabricated hierarchical hollow
Ni@C spheres derived from Ni-MOFs, which exhibited superior catalytic perfor-
mance and enhanced stability for CO, reduction reaction (Figure 5E).°> Novel
HPC with ultrahigh concentrations of Zn single atoms (Figure 5F) was synthe-
sized for catalytic CO, cycloaddition with epoxides under light and showed excel-
lent performance. The hollow structure of the porous carbon cavity can convert

‘(©)

E) Catalytic CO, methanation performance of Ni@C

the absorbed light energy into heat energy, which significantly improves the con-
version of endothermic CO,. Meanwhile, single Zn atoms act as a Lewis acid site,
and a Lewis base site can cooperate to boost substrate activation. Moreover, the
carbon shell with hierarchically porous character accelerated CO, enrichment
and improved the transport rate of reactants/products. That was the first report
on integrating the photothermic effect into endothermic CO, conversion.*®

Briefly, hollow porous materials derived from MOFs have the following advan-
tages as catalysts in industrial catalytic processes: (1) the porous MOF shell can
serve as a host matrix to prevent NP aggregation and (2) be applied to realize se-
lective catalysis, and (3) the presence of porosity allows for promoting mass
transport of chemical species. It is noteworthy that the thickness of the shell
has a certain degree of influence on the catalytic performance.

Electrocatalysis

ORR. Fuel cells and metal-air batteries have garnered extensive attention
owing to their being a possible solution to the fossil energy shortage and
increasing environmental pollution.”® ORR is important for fuel cells and metal-
air batteries.” The precious metal Pt is applied as an outstanding and effective
four-electron transfer electrocatalyst for ORR. However, the low abundance and
preciousness limit its widespread applications. Among all of the reported electro-
catalysts, MOF-derived nanomaterials with high specific surface area, an abun-
dance of accessible active sites, and improved mass/charge transfer rate have
been viewed as highly beneficial for the ORR process (Table 1).

Among the studied non-noble metals, Fe and Co are the most active metal spe-
cies for ORR.”%?%T A |ot of excellent studies about Fe and Co as efficient cathode
electrocatalysts have been reported. Tang and co-workers reported carbonized
Fe NPs derived from MOFs (MIL-88B-NHj), which showed excellent ORR property
with Egneet @and Eq o reaching 1.03 and 0.92 V (versus RHE), respectively, in alkaline
medium. In real ADMFC, carbonized Fe NPs possessed high output power den-
sity and were evenly 1.7 times higher than the 20% Pt/C.”” Guo and colleagues
fabricated Co@Cos04@core@bishell NPs derived from MOFs into a highly or-
dered porous CM to prepare the catalyst Co@Co504,@C-CM used for ORR.”®
This work created a solid interaction/contact between the metal oxide and the
carbon shell linked to the porous CM, which is significant for facilitating the
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Table 1. Summary of ORR performance of MOF-derived hollow porous electrocatalysts

Material Performance Electrolyte PEMFC/Zn-air battery Stability Reference

A-CoNC E1/2=079V 0.1 M KOH peak power density 144.0 mW cm 2 - Zhong et al.”®
Eonset = 0.91 V capacity 612.3 mAh g~ (Zn-air battery)

CNPs E»=0.92V 0.1 M KOH power density 22.7 mW cm 2 - Zhao et al.””
Egnset = 1.03 V

Co@C030,@C-CM Eip=07V 0.1 M KOH - - Xia et al.”®
Eonset = 0.85V

TPI@Z8(Si0,)-650-C - - power density 1.18 W cm ™2 at 0.8 Vig-free - Wan et al.”®

current density 0.047 A cm 2 at 0.88 Vigfree

CrN@H-Cr-N,-C Ei/2=072V 0.1 M HCIO,4 current density 0.888 A-cm 2 110 h retain 77% Yang et al.?°
Eonset = 0.85V peak power density 0.382 W cm ™2 at 0.43 V
Tafel slope = 55 mV dec™’

Ce SAS/HPNC Ei;2=0.862V 0.1 M HCIO, circuit voltage 0.95 V - Zhu et al.®’
Jk =2.673 mA cm 2 power density 0.525 W cm ™2 at 2.0 bar

PSTA-Co-T Ei/, =0.878 V 0.1 M KOH - - Wei et al.®?

HNCSs Eq12=0.82V 0.1 M KOH - 10 h retain 96.5% Chai et al.*
Eonset = 0.92 V
Tafel slope = 65.7 mV dec™’

N-HPCs E1/,=092V 0.1 M KOH power density 158 mW cm 2 (Zn-air battery) - Kong et al.®*
Eonset = 1.06 V power density 486 mW cm~2 (H,-0, fuel cell)

Fe/NC-700 E,=0.854V 0.1 M KOH - 8 h retain 97.7% Zhang et al.®®

(CoS,/N, S-HCS)700 Ey =087V 0.1 M KOH - 60,000 s retain 59.6% Xiao et al.®®
Egnset = 0.93 V

C-PANI-MIL-2 Ei/, =087V 0.1 M KOH - - Yang et al.?”
Eonset = 1.0V

C-FeHZ8@g-CsN4-950 Eq/p = 0.845V 0.1 M KOH - 80,000 s retain 91.6% Deng et al.®®
Eonset = 0.97 V

H-Fe-N,-C Ei/, =092V 0.1 M KOH - - Yang et al.?°

electron transfer rate between NPs and the porous CM and improving mass
transport of O, and electrolytes, making the NPs hard to detach from the porous
CM support. It was found that, in alkaline medium, Co@Co3z04,@C-CM displayed
almost identical catalytic performance but enhanced stability and better meth-
anol tolerance for ORR relative to the 20% Pt/C.

In addition to MOF-derived composites, MOF-derived materials with an M-N-C
structure (M represents a metal atom) have also demonstrated supernormal
electrocatalytic performance for ORR and have attracted widespread attention.”
For instance, Wan et al. prepared a concave-shaped Fe-N-C SAC (TPI@Z8(SiO,)-
650-C) with enhanced surface area and dense Fe-N, sites (Figure S3A).”° Further
investigation revealed that TPI@Z8(Si0,)-650-C has the special properties of
additional mesoporosity, high surface area, and high exposure to Fe-N, active-
site density (Figures S3B and S3C). The obtained catalysts showed excellent
PEMFC performance, achieving current densities of 0.022 A cm~? at 0.9 Vigfree
and 0.047 A cm™2 at 0.88 Viggee Which achieved the DOE 2018 target.
TPI@Z8(Si0,)-650-C achieved a superior performance of 129 mA cm~2 at 0.8
Virfree Under 1 bar Ho-air and @ Pray of 1.18 W cm ™2 under 2.5 bar Hy-O,. This
was better than the performance reported in most of the literature (Figure S3D).
Li and colleagues synthesized N-coordinated Fe/Co dual-site catalysts derived
from Zn/Co bimetallic MOF-encapsulated FeCls molecules (Figure S3E). Multiple
means of characterization confirmed the presence of Fe/Co single-atom dual
sites.*® According to EXAFS results, the dual metal center was named NgFe-

CoNj3 in Figure S3F. The catalyst with Fe-Co dual active sites exhibited remark-
able ORR performance under acidic conditions with E4/, (0.863 V versus RHE)
and enhanced stability compared with 20% Pt/C, individual Fe SAs/NC, and Co
SAs/NC (Figures S3G and S3H). Density functional theory (DFT) calculations
proved the single-atom dual sites can decrease the cleavage energy of 0-O bonds
and realize excellent performance toward ORR and high selectivity for the four-
electron reduction path (Figure S3I). Recently, we reported on CrN@H-Cr-Nx-C
derived from ZIF-8@Cr-TA core-shell nanocrystals (Figure S4A).%° Due to the syn-
ergies between CrNNPs and single-atomic-site CrN,, the enriched CrN, sites,
discrete  CrNNPs, and affluent micro/mesopores, as an electrocatalyst,
CrN@H-Cr-N,-C displayed superior electrocatalytic performance for ORR in an
acidic medium with outstanding OCV, and excellent current power densities
were also observed when used as a cathode electrocatalyst applied in PEMFC
(Figure S4B). The CrN@H-Cr-Nx-C also showed enhanced stability, proved by
durability tests (Figure S4C). In addition, Ce-SAS/HPNC with a hierarchically
macro/meso/microporous structure derived from MOFs can also be applied
as an electrocatalyst for ORR (Figure S4D).°" XAS analysis results verified that
the Ce sites were stabilized by four coordinated N atoms and six O atoms (Ce-
N4/Og) (Figures S4E and S4F). Remarkably, the Ce-SAS/HPNC displayed an
outstanding ORR performance with Egnser Of 1.04 V, Eq/» of 0.862 V, and Ji of
2.673 mA cm~2 at 0.9 V compared with the referenced catalysts (Figures S4G
and S4H). In addition, the doping of heteroatoms (such as S, P, or O) will change
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Figure 6. MOF-derived hollow porous materials and their application in ORR (A) Schematic of the primary configuration of H,-O, cells. (B) Discharge polarization and the corre-
sponding power density curves of ZABs using N-HPCs or Pt/C catalyst as the air cathode. (C) Polarization and power density plots of PEMFC using N-HPCs as cathode catalysts under
H,-05 (test conditions: 60°C, 100% RH, 1 bar H,-0,). (D) Interfacial electron transfer schematics in bilayer model (N-HPCs). (E) The reaction pathway of ORR in acidic solution. (F) Free
energy diagrams for ORR at U = 0 on a double-layer structure in the whole pH range.®* Copyright Springer Nature.

the intrinsic performance of M-N-C catalysts. In this regard, P-doped P-CNCo-
20°° and N/P-doped Co-N,P,” were also reported to have enhanced ORR perfor-
mance. In addition, MOF-derived hollow heteroatom-doped carbon materials also
displayed outstanding electrocatalytic ORR activity.**

As an attractive study, a N-doped carbon electrocatalyst with a negligible
amount (0-0.08 wt %) of Fe (N-HPC) was synthesized. Such N-HPCs feature a
hollow and hierarchically porous architecture, which shows excellent ORR activity
and durability.®* When used as cathode catalysts, the N-HPCs demonstrated
distinguished power densities of 486 and 158 mW cm~? for PEMFCs and Zn-
air batteries, respectively. Interestingly, Fe sites do not contribute to ORR activity
(Figures 6A=6C). Further, spin-polarized DFT calculations and CHE methodology
were applied to investigate the source of the original catalytic activity of N-HPCs
for ORR. The results indicated that the non-covalent-bonded N-deficient/N-rich
heterostructure in the hierarchically porous architecture of N-HPCs could accel-
erate electron transfer between the layers and provide the active sites for oxygen
adsorption and activation (Figures 6D—6F).

OER. OER plays an essential role in energy conversion technologies. To reduce
the expensive cost of OER, extensive efforts have been devoted to exploiting high-
performance and inexpensive OER electrocatalysts, with MOF-derived hollow ma-
terials being one of them (Table $2).°*

According to numerous reports, MOF-derived bimetal or metal oxide NPs
(especially Fe, Co, and Ni) are beneficial to OER catalysis.”® '°° For example,
Lou and co-workers reported NiCoP/C (Figure 7A) to have a remarkable OER cat-
alytic performance,”’ which displayed a low overpotential of 330 mV at 10 mA
ecm~2 and enhanced stability of 96.5% of the initial current is retained after
10 h (Figures 7B and 7C). In addition, Yao and colleagues prepared two types
of hollow C0304/C (Z67-C0304/C-4 and Z9-Co304/C-4) via carbonized and then
oxidized ZIF-67 and ZIF-9 precursors.®® Figures 7D and 7E demonstrate that
the catalysts of Z67-Co304/C-4 and Z9-Cos0,4/C-4 exhibited excellent activity
for OER. This is because the unique hollow porous carbon structure improves
the electron transfer rate, and vast oxygen vacancies in hollow Co30,/C can
improve the adsorption of water molecules to promote OER activity. Apart
from MOF-derived metal oxides, MOF-derived CoSe, with a hollow structure
was also synthesized as an OER electrocatalyst with improved performance.®
The optimized CoSe,-450 microspheres displayed 10 mA cm™2 at n = 330 mV
with a small Tafel slope of 79 mV dec™", better than the reference catalysts.
This is due to the hollow structure and uniformly distributed active sites, which

facilitate a fast mass and electron transport rate. Integration of MOF-derived ma-
terials with metallic oxide proved to be a facile and effective strategy to design
high-activity OER catalysts."”’

MOF-derived LDH materials also showed excellent OER properties. Zhang et al.
fabricated Ni-Fe LDH nanocages with tunable shells that used MIL-88A particles
as sacrificial templates (Figure 7F).'® By mixing different proportions of ethanol
and water, Fe-Ni LDH single-shelled nanocages (SSNCs) and double-shelled
nanocages (DSNCs) were easily acquired. Owing to more Fe elements in the
outer shell, the obtained Ni-Fe LDH DSNCs with effective surface area exposure
showed superior OER performance and a high Cy value compared with the single
shelled ones (Figure 7G).

HER. Like the OER, HER is an essential reaction for water splitting. Although
the overpotential of HER is much lower than OER, electrocatalysts are still needed
to improve the HER reaction.'®? Recently, earth-abundant transition metal car-
bides, especially MoC, have been extensively studied as high-efficiency HER cat-
alysts under acidic and basic conditions. Mesoporous molybdenum carbide
nano-octahedrons (MoC, nano-octahedrons) were prepared through confined
carburization in an MOF.*®> The unique nanostructure MoC, nano-octahedrons
showed outstanding catalytic performance for HER in acidic medium and alkaline
conditions. Moreover, on repeated potential sweeps, the MoC, nano-octahedrons
exhibited promising durability in acidic and alkaline media (Figure 8A). Stability
tests are demonstrated in Figure 8B. The current density of MoC, nano-octahe-
drons is generally stable for more than 10 hin 0.5 M H,SQy, with slight degrada-
tion observed during long-term operation in T M KOH. A TEM image conveyed
that the nanostructure and crystallinity after degradation measurement are well
retained, further confirming its good stability in an acidic environment (Figure 8B).
The HER activity under basic conditions is also superiorly favorable for many HER
catalysts, such as graphene and CNTs, and even state-of-the-art -Mo,C-based
electrocatalysts. Subsequently, hollow Ni-decorated molybdenum-carbide was
also synthesized through a similar strategy.'®* Benefiting from the advantages
of combined composition (MoC and Ni NPs) and unique structure, the obtained
samples showed a small overpotential of 123 mV at 10 mA cm™2, a small Tafel
slope of 83 mV dec™" in alkaline medium, and superior stability. Zhang et al. re-
ported ultrafine Pt-Co alloy NPs confined on surfaces of CNTs (PtsCo@NCNT
catalyst) and, benefiting from the synergistic effects of the bimetallic alloy com-
ponents, the Pt;Co@NCNT catalyst showed remarkably enhanced HER perfor-
mance in both acidic and alkaline media. The exquisite porous carbon shell
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Figure 7. MOF-derived hollow porous materials and
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Heteroatom-doped carbon nanomaterials are
considered to be promising electrocatalysts for

the electrocatalytic reaction process. Direct for-
mation of NCNTFs (Figures 8C and 8D) derived
from MOFs could be achieved through control
of the pyrolysis atmosphere.'® The as-prepared
NCNTFs demonstrated higher Eq /5, with 0.87 V,
for ORR than the 20% Pt/C electrocatalyst with
0.84V (Figure 8E) and possessed superior stabil-

ity after 5000 cycles. In addition, the NCNTFs
demonstrated superior electrocatalytic proper-

1.2

structure host prevents the ultrasmall PtsCo NPs from aggregating, thus ensuring
long-term durability.'°® In a fascinating study, Huang et al.'® synthesized a series
of hollow Co-based bimetallic sulfide (M,Cos_,S4, M = Zn, Ni, and C) polyhedrals
by using MOFs as self-templates. Zng 30C02 7034 exhibited outstanding electroca-
talytic HER activity over a wide pH range, with overpotentials of 80, 90, and 85 mV
at10mAcm—2and 129, 144, and 136 mV at 100 mA cm~2in 0.5 M H,S0,, 0.1 M
phosphate buffer, and T M KOH, respectively. Zng30Co,70S4 further exhibited
photocatalytic HER activity when working with an organic photosensitizer (Eosin
Y) or semiconductors (TiO, and C3N,4). This study provides a reference for the
synthesis of transition metal sulfides used for HER.

Bifunctional electrocatalysts. Electrocatalysis, as an important process in
energy conversion, usually involves more than one process. Specifically, water
splitting includes HER and OER, and metal-air batteries involve ORR and OER.
The ORR is also the fundamental electrochemical reaction for fuel cells. The
design of bifunctional electrocatalysts is significant for the electrochemical pro-
cess and puts forward higher requirements on the componential tuning and
morphological control of the catalyst. MOF-derived hollow structure materials
are considered high-efficiency electrocatalysts due to their unique advantages,
such as tailorable composition and multilevel porosity.

Transition metals doped with heteroatoms are considered to be highly efficient
electrocatalysts. Pan et al. proposed the preparation of CoP/NCNHP by a succes-
sive pyrolysis-oxidation-phosphatization process applied to core-shell-structured
ZIF-8@ZIF-67 as the precursor.** The excellent catalytic performance of both
HER and OER of CoP/NCNHP can be attributed to the synergistic effects between
highly active CoP NPs and NCNHP. And the overpotentials are 140 and 115 mV
for the HER under acidic and alkaline conditions to achieve the current density of

13 14 15
Potential (V, vs RHE)

1.6 ties for the OER. As shown in Figure 8F, they
gave a current density of 10 mA cm~2 at 1.60 V
(versus RHE), which compared favorably with re-
ported nanocarbon-based catalysts and was
lower by ~180 mV than the 20% Pt/C (10 mA

2, about 1.78 V). The advantageous traits
of NCNTFs, such as hierarchical shells of interconnected crystalline NCNT, opti-
mum graphitic degree, and N-doping level, are the source of the excellent electro-
catalytic activity of both ORR and OER.

In summary, MOF-derived hollow nanostructures are promising candidates for
applications in electrocatalytic reactions owing to their hierarchical porous struc-
tures, accessible active sites, high chemical stability, and good electron conduc-
tivity. Electrocatalytic reactions such as ORR, HER, and OER are crucial reaction
steps in energy conversion and require catalysts to accelerate their slow kinetics.
The performance of the catalyst plays an important role in energy conversion ef-
ficiency. Although MOF-derived catalysts have made great achievements in elec-
trocatalytic applications, several problems and challenges still exist, such as de-
vice durability, stability, cost issues, catalytic performance, structure-activity
relationships, etc. Therefore, the above issues should be considered when
designing electrocatalysts.

Energy storage and conversion

MOF-derived hollow nanostructures with extremely porous structures, low den-
sity, robust architecture, large surface area, and rich redox reactions of metal ions
have verified their unique capabilities and exhibited improved energy storage and
conversion performance.’®® Recently, MOF derivatives have been extensively
applied in energy storage, especially for LIBs, SIBs, and supercapacitors, and
showed high reversible capacity, superior rate, and cycling performance.'®*'°

LIBs and SIBs. Various novel MOF-derived hollow structures, such as
CUOI26,1H—H3 60304‘20,27,114,115 ZnXC03,XO4,”6 COl\/an4/003O4,H7 Co304/
TiO,,'"® Fes04°" Zn0/ZnFe,04/C,*® NiCo,04/NIiO," " Mn,05,"?° and CogSs,'?!
have been reported and used as LIB electrodes. Complex Coz04@CozV,0g
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OER."%® Copyright Springer Nature.

hollow structures were prepared and applied for LIBs.'? The experiment revealed
that Co30,4@Co3V,0g shows superior rate capability, cycling stability, and revers-
ible capacity. Moreover, after a long charge and discharge cycle, the complex hol-
low structure of Coz04@Co3V,0g is almost unchanged, indicating the stability of
the hollow structure in LIBs. In addition to LIBs, MOF-derived hollow structures,
ie, VN-NBs,'” MHPCS/Se,'** and Se,S,,'** were also used as electrode mate-
rials in Li-S and Li-Se batteries.

The sluggishness of the LiPSs redox reactions is a great challenge in the large-
scale practical application of Li-S cells.'?® Aiming at the above problems, Li and
co-workers constructed a hollow N-doped porous carbon (Ni-Ns/HNPC) with an
optimal Ni-Ns active moiety, which acted as an ideal host for a sulfur cathode un-
der the guidance of theoretical simulations.?” First, the Ni-N,/C structure (x = 3—
5) with the highest cathode performance was selected by first-principles calcula-
tion. The energy calculation results of the reaction step indicated that the Ni-Ns/C
structure is the best cathode candidate. Therefore, they fabricated Ni-Ns/HNPC
with Ni-Ns active sites using MOFs as self-sacrificing templates. As cathode of
Li-S batteries, Ni-Ns/HNPC exhibited outstanding rate performance and long-
term cycling stability.

Recently, SIBs have been proposed as a potential alternative to LIBs due to the
advantage of the high abundance and low cost of the sodium source, high sys-
tem safety, and wide distribution, as well as storage mechanisms and compo-
nents similar to those of lithium.® Similar to LIBs, MOF-derived hollow metal ma-
terials can also be applied as electrodes with remarkable rate capability, cycling
stability, and reversible capacity to SIBs.>***'26" 131 iy et al. reported on NisS,/
CooSg/N-doped carbon composites via carbonization and sulfurization of binary
Ni/Co MOFs (Ni-Co-MOF)."*? Due to the integrated merits of ultrafine NigS, and
C0gSg NPs (~7 nm), hollow porous structure, and an ultrathin N-doped carbon
coating, the final composite material exhibited excellent performance when
used as an anode in SIBs. Experiments showed that a reversible specific capacity
of 419.9 mAh g~" was achieved after 100 cycles at 0.1 Ag~", and a superior ca-
pacity retention rate of 98.6% was achieved. In addition, excellent rate perfor-
mance was observed: at a current density of 2 A g™, an average capacity of

323.2mAh g~ can be reached. The formation of metal sulfide and N-doped car-
bon layers provides larger capacity and enhanced conductive surface coating.
With these virtues, Ni3S,/CogSg/N-doped carbon composite materials possess
fast sodium storage kinetics and high conductivity, thereby achieving high rate
properties.

The construction of composite nanomaterials can effectively alleviate the huge
volume expansion/contraction of antimony-based materials when used in so-
dium-ion batteries, resulting in low cycle life. For instance, Huang and co-workers
proposed a NiN-Sh,Ses@C composite with a hierarchical nanodot-in-nanofiber
structure in which antimony selenide (Sb,Ses) nanocrystallites are confined by
both 0D and 1D carbon layers.'® As expected, the NiN-Sb,Se;@C composite
anode achieved enhanced capacity and exceptional cycle lifespan for over
10,000 cycles at 2.0 A g~ (Figure S5A). Figure S5B demonstrates the process
of the structure evolution of micro-Sh,Ses, Sb,Ses@C, and NiN-Sb,Ses@C during
electrochemical processes. It is seen that the NiN-Sb,Se;@C composite can bear
the volume-change-induced strain and avoid aggregation of Sb,Se; NPs. Simi-
larly, the (CoS NP@NHC)@MXene composite manifests distinguished electro-
chemistry performance when used as electrode material for all of the LIBs,
SIBs, and PIBs, which benefit from the synergistic effect of the components
(Figure S5C)."*

Supercapacitors. Supercapacitors have become an ideal choice of energy
storage device for their various advantages such as low internal resistance,
high power density, and excellent cycle life."*>'%° The surface area and chemical
composition of the electrode have a great influence on the properties of the
supercapacitor. In this regard, MOF-derived porous hollow structures meet re-
quirements such as affording rich redox chemistry with abundant active sites,
inducing the hollow structures for larger capacitance, forming carbon-based
nanomaterials for improving surface areas, and enhancing conductivity
(Table $3)."° Until now, hollow-structured metal oxides (MnO,,"*” Ni0/Zn0,%
C0304,"%® NiyCos_,04,'"*° Co304/NiC0,04°" Coz04/PANI') and metal sulfides
(NiCo-LDH/C0oSg,'*! Zn-Co-S RDCs,'*? NiS,/ZnS,'*® CoS1 gg7 NPs,'** H-NiS.x/
C-50,'*° CogSs@NI0,'*® NiCoMn-S,'” CoSNP/CoS-NS DSNBs'*) have seen
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widespread use as anode materials for supercapacitors. For instance,
Ni,Cos_,0O4 with a hollow structure was used as anode material in supercapaci-
tors and demonstrated outstanding specific capacitance of 28708 F g~ ' at 1 A
g~" and excellent cyclic stability with 81% capacitance retention after 5000 cy-
cles.”? In addition, Ho and colleagues fabricated hybrid NiCo-LDH/CogSg (C/
LDH/S) with outstanding performance in supercapacitors.'*' As Figure S5D
shows, galvanostatic CD indicated excellent capacitive behavior with highly
reversible and rapid reaction kinetics of C/LDH/S. In addition, it exhibited excellent
cycle stability and 95.4% retention capacitance after 3,000 cycles. They found
that the uniform combination of multiple metal species, the production of heter-
osulfide-hydroxide, and the arrangement of the hollow structure optimize the cat-
alytic site and enhance conductivity and hydrogen adsorption of NiCo-
LDH/CogSs.

Pang and co-workers proposed a general approach for preparing hollow 3D
Mxene/MOF composites (TisC,Tx/ZIF-67/CoV,0¢) by in situ growth of MOFs
and subsequent ion exchange.'*® TisC,Tx/ZIF-67/CoV,0s overcomes the disad-
vantage of poor conductivity of traditional MOFs.'**'>" Notably, the TisCoTX/ZIF-
67/CoV,0¢ electrode demonstrated excellent performance with a high specific
capacitance of 2538 F g™ at 5 A g~' and a high coulombic efficiency of
94.4% after 4000 GCD cycles at 3A g~

Composite materials can overcome the defects of a single material and inte-
grate the advantages of different nanomaterials, thus facilitating the performance
of the target application. Therefore, a composite could obtain neoteric physical
and chemical properties that cannot be achieved by a single component.

Environmental applications

Environmental pollution has become a critical issue in human health and envi-
ronmental protection.’®>'%° Benefiting from their tunable configuration, control-
lable composition, permanent porosity, and larger specific surface area, MOF-
derived hollow structures have displayed fascinating physicochemical properties
and amassed extensive attention in catalytic degradation of pollutants in our envi-
ronment. Li and colleagues fabricated ZnO@C-N-Co core-shell nanostructures
that used a hollow Zn/Co-ZIF matrix as precursor toward efficient degradation
of MO and displayed excellently improved performance and remarkable recycla-
bility.'>* The CeO,/Au@SiO, hollow nanotubes obtained demonstrated high cat-
alytic performance for 4-nitrophenol reduction. The kinetic reaction rate constant
(k) of Ce-MOF/AU@SIO, (0.71 min~") is higher than that of Au@SiO, (typically
0.1 min~"). Moreover, the catalytic activity was decreased by only ~17.6% after
five successive cycles, indicating that the CeO,/Au@SiO, catalyst has superior
stability and reusability. The outstanding catalytic performance was attributable
to the unique and small size of the Au NPs, as well as the strong synergistic effect
between the Ce0, and the Au NPs."® In addition, hollow materials have abundant
metal active sites and can also realize the elimination of organic pollutants by
exciting free radicals with strong oxidizing properties. For example, the homoge-
neous bimetallic hollow C-CoM-HNC derived from a MOF achieves the effective
removal of RhB by activating persulfate.'*® According to reports, similar studies
have used MOF-derived hollow Coz04/carbon as an effective activator of PMPS
and achieved the degradation of BPA.">’

Adsorption technology is widely used to purify environmental pollutants due to
its advantages of simple operation, simple regeneration, and large-scale applica-
tions.'*®~ %% The inherent specialties of MOF nanomaterials, including higher sur-
face area, abundant pore structures, and adjustable chemical composition, have
been allowing them to serve as prospective candidates for supernormal adsor-
bents. Yang and co-workers'®' reported MOF-derived porous Niy.,CoyFe,0,4 mi-
crocubes as adsorbents for efficient removal of nitrophenol. The equilibrium
quantity of Niy.CoyFe,0, for nitrophenol was 47 mg g~ of ferrite accomplished
in 7 min. High specific surface area and mesoporous nature are the keys to the
excellent adsorption performance of Ni;CoFe,04 on nitrophenol.’® Analo-
gously, carbon aerogels bearing a hierarchical structure (Biomass-C@MIL-53-
C) were prepared via direct carbonization of kapok fibers assembled with
MIL-53 on its surface.'®” As an adsorbent, it demonstrated superior adsorption
performance, excellent hydrophobic property, and outstanding cycling stability.
Specifically, the adsorption capacities of Biomass-C@MIL-53-C were 35-119.5
times their own weight toward various kinds of oils and organic solvents. More-
over, after eight adsorption-squeezing cycles, it could retain 77.2%-96.7% of its
initial adsorption capacity, implying that Biomass-C@MIL-53-C was an
outstanding adsorbent for organic pollutant purification.

Advanced oxidation processes (AOPs) are a robust system to degrade
refractor organic pollutants in environmental pollution management. MOF-
derived SACs have been widely used due to the maximum utilization of metal
atoms and the unique electronic properties of metal sites and ultralow metal
loads.’®® Mi et al. reported that atomically dispersed Co-SA catalyst derived
from MOFs applied to peroxymonosulfate (PMS) activation.'®* DFT calculations
revealed that CoN,., was the definite active site (Figure 9A). '0, was the predom-
inant reactive oxygen species, and the proportion was 98.89% (Figures 9B and
9C). The generated '0, showed excellent degradation activity for organic pollut-
ants in a wide pH range.

Other applications

In addition to the above-mentioned emerging applications, the unique proper-
ties of MOF-derived hollow structures enable their applications in gas storage/
separation,'®® gas sensors,?>?"1¢77173  extraction of uranium  from
seawater,'®>'"* etc. Xu and co-workers synthesized Zn0O/ZnFe,0, hollow nanoc-
ages and used them as a sensing material for gas sensors. It demonstrated an
improved response to acetone (25.8) with a detection limit of 1 ppm.'®” More-
over, MOF-derived Ag/Au HPNS@FO were used for electrochemical As(l1l) deter-
mination and exhibited high sensitivity (922.5 pA ppb~") and sustained
stability.'”®

Recently, our group applied the MOF-derived adsorption-electrocatalyst Fe-N,-
C-R in uranium extraction from seawater and demonstrated considerable re-
sults.'®® Real seawater experiments showed that Fe-N,-C-R has a superior ura-
nium extraction capacity of ~1.2 mg g~ in 24 h. Interestingly, we found that
the isolated Fe-N, site first reduced U0,%" to UO,", and then oxidized U(V) to
U(VI) in the presence of Na®, finally obtaining the product Na,O(UOs-H,0),
(Figures 9D and 9E). To our knowledge, the developed system is the first to yield
a U(VI) solid product (i.e., Na,0(UO3- H,0),) in uranium extraction from seawater
by an adsorption-electrocatalysis system. We further demonstrated that an ami-
doxime-functionalized indium-nitrogen-carbon catalyst (In-N,-C-R) offers a 5-fold
higher uranium extraction capacity in seawater compared with our aforemen-
tioned Fe-N,-C-R system. X-ray absorption spectroscopy and in situ Raman spec-
troscopy allowed the relationship between the In-N,-C-R structure and the adsorp-
tion-electrocatalytic mechanism for uranium extraction from seawater to be
understood.'”* This provides meaningful clues for the study of uranium extrac-
tion from seawater. The adsorption-reduction of U(VI) to U(IV) is an efficient tech-
nique for the extraction or preconcentration of U(VI) from aqueous solutions.

In addition to the above applications, MOF-derived porous hollow materials
also exhibited excellent performance in photocatalytic and electrocatalytic CO,
RR. For example, Ma et al."’® synthesized crystalline MoS,@TiO, nanohybrids
with MOFs as precursors through a simple hydrothermal method. The optimal
material showed prominent catalytic activity for HER with a high hydrogen pro-
duction rate of 10,046 umol h™" g~ under visible light. The catalyst obtained
also displayed excellent electrocatalytic activity. The extensive and close contact
interface and synergistic effect of different components are regarded as the
source of enhanced catalytic activity. Moreover, a novel ZnO@C-N-Co core-shell
nanocomposite was also reported as a highly efficient photocatalyst for pollutant
photodegradation.'** The most significant advantage of this material is the recy-
cling performance, which benefits from the assistance of magnetic Co NPs inside
the material. Reducing CO, toward the generation of valuable chemicals is one of
the important strategies to achieve the dual carbon goal."””'”® Wang et al. pre-
sented a carbon-confined indium oxide electrocatalyst for efficient CO, RR to-
ward the direct production of formic acid.'”® Experimental results showed that
the formate selectivity exceeds 90% in a wide potential window from —0.8
to —1.3 V versus RHE in a liquid-phase flow cell. The high selectivity and activity
for CO, RR benefited from the carbon protective layer preventing the reductive
corrosion of indium oxide and the carbon layer, optimizing the adsorption of re-
action intermediates.

CONCLUSION AND OUTLOOK

We have systematically summarized the design strategies of MOFs as precur-
sors and/or soft templates in the fabrication of hollow porous materials, including
hollow carbon, metals, metal oxides, metal carbides, metal sulfides, metal hydrox-
ides, and their hybrid composites. Due to various favorable structural features,
MOF-derived hollow nanomaterials are considered promising candidates for mul-
tifield applications: an enhanced surface area, low density, mesoporous structure,
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higher loading capacity, and shortened transport distance for mass and charge.
Here, the promising applications of MOF-derived hollow structures for chemical
catalysis, electrocatalysis, energy storage and conversion, environmental applica-
tions, and so on have been summarized.

Despite the intriguing progress and great achievements that have occurred in
the synthesis and extensive application of various MOF-derived HPMs, the study
is at a burgeoning stage, and more effort is needed to deal with the issues that will
be encountered in the future development process. Here, we propose several
challenges and research directions that MOF-derived hollow materials may
face in future development: (1) more effort should be focused on controllably syn-
thesizing complex structures and regulating components of hollow MOFs and de-
rivatives according to the needs of specific applications; (2) combination with
other functional nanomaterials, for example, NPs, clusters, CNTs, and GO, etc,,
is an economical and facile strategy to regulate the properties of hollow MOFs
and their derivatives; (3) the design of hollow MOFs or their derivatives with
different sizes and geometrical structures will greatly enrich the storage of
HPMs and ultimately affect their internal properties; (4) realizing the large-scale
yield of hollow MOFs or derivatives is significant in practical applications; (5)
strengthening the deep understanding of structure-activity relationships of hollow
material structures is important; particularly, the mechanisms of various MOF-
derived hollow materials in electrochemistry have not been thoroughly investi-
gated; and (6) future work should combine experimental and computational
methods to explore the interior reaction mechanisms, revealing the influence of
structure-property-function and their synergistic interactions.
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