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ABSTRACT: Nature seamlessly integrates multiple functions for energy conversion, utilizing
solar energy and salinity gradients as the primary drivers for ionic power generation. The
creation of artificial membranes capable of finely controlling ion diffusion within nanoscale
channels, driven by diverse forces, remains a challenging endeavor. In this study, we present an
innovative approach: an ionic covalent-organic framework (COF) membrane constructed
using chromophoric porphyrin units. The incorporation of ionic groups within these
nanoconfined channels imparts the membrane with exceptional charge screening capabilities.
Moreover, the membrane exhibits photoelectric responsivity, enhancing the ion conductivity
upon exposure to light. As a result, this leads to a substantial increase in the output power
density. In practical terms, when subjected to a salinity gradient of 0.5/0.01 M NaCl and
exposed to light, the device achieved an outstanding peak power density of 18.0 ± 0.9 W m−2,
surpassing the commercial benchmark by 3.6-fold. This innovative membrane design not only
represents a significant leap forward in materials science but also opens promising avenues for
advancing sustainable energy technologies.
KEYWORDS: covalent-organic-framework membrane, opto-ionic effect, solar-salinity synergy, reverse electrodialysis,
sustainable energy harvesting

■ INTRODUCTION
The objective of the Paris Agreement, aimed at limiting global
warming to below 2 °C, has encountered skepticism regarding
the feasibility of reducing anthropogenic greenhouse gas
emissions at a sufficient rate. Consequently, there has been a
growing impetus to explore alternative energy sources capable
of facilitating the transition to a net-zero carbon emissions
future. The pursuit of a more sustainable global energy
portfolio offers a promising avenue to tackle this challenge.1

Among the various alternatives, solar energy and salinity
gradient energy have emerged as particularly promising
options.2−10 However, technologies that could concurrently
harness these energy sources remain relatively untapped. In the
domain of classical physics, the discipline of ionics presents a
captivating counterpart to electronics. It opens avenues for
integrating the capabilities of ionic membranes with the unique
attribute of light responsiveness, thereby creating a promising
amalgamation of functionalities.11,12 The major scientific
challenge in this endeavor is developing ionic membranes
that also exhibit photoelectric effects (Figure 1).11,12 To date,
the development of ionic materials with photoelectric proper-
ties is in its infancy, with only a few studies conducted in this
area.26,27 To successfully bridge this gap, membranes with the
following attributes are highly desired: (1) amenable synthesis

to enable the integration of multiple functionalities, (2)
conjugated structures constructed by chromophores to boost
the photoelectric responsivity upon light absorption, and (3)
abundant ionic nanochannels to achieve high permselectivity
and provide efficient transport pathways.

Covalent organic frameworks (COFs) have emerged as a
promising class of crystalline porous materials with custom-
izable characteristics for various applications.28−36 Their
modular nature allows for the assembly of building blocks
from a wide range of organic molecules and subsequent post-
synthetic modification of pore channels with specific functional
groups. Notably, COFs offer the flexibility to integrate
chromophores as building units and attach ionic entities to
the pore walls, making them well-suited for the creation of
ionic materials with photoelectric responsiveness.37−43 Fur-
thermore, two-dimensional COFs (2D COFs) distinguish
themselves for their unique advantages in membrane
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fabrication, aligning with the pursuit of this innovative
goal.44−57 The conjugated 2D layers often adopt eclipsed

configurations, facilitating charge carrier migration. Simulta-
neously, the continuous 1D channels serve as conduits for ion
mobility, enhancing the potential for synergistic energy
conversion.

Porphyrin was chosen as a chromophore strut to illustrate
this concept due to its proven efficiency in light-harvesting and
electron-transfer processes in both natural and artificial
systems.58−65 Ionic groups were introduced to the COFs by
combining a hydroxy-functionalized monomer with the
porphyrin unit for additional chemical modifications. The
resulting membranes undergo efficient charge separation when
exposed to light, generating a transmembrane electric field that
directs ion movement across the membrane. The photogating
activity could be finely and reversibly adjusted by varying the
light intensity. Additionally, the decorated ionic sites impart
the membrane with ionic screening capabilities, showing
outstanding permselectivity across various salt concentration
gradients. These features point to its immense potential in
converting ionic energy to electricity. Remarkably, the
multifunctional membrane yielded a power density of up to
10.8 ± 0.5 W m−2 in the reverse electrodialysis (RED) mode at
the mimic estuary conditions (0.5/0.01 M NaCl). When
illuminated by a xenon lamp, this value surged to 18.0 ± 0.9 W
m−2, approximately quadrupling the standard commercial
benchmark of 5 W m−2.13−25 This work represents one of
the pioneering efforts in constructing ionic membranes with a
photoelectronic effect. The versatility of COFs in developing
multifunctional membranes underscores their immense
potential for sustainable energy utilization and integration
into next-generation devices.

Figure 1. Schematic representation of the integration of ionic
membranes (a) with light responsiveness (b). This diagram illustrates
the functional interconnection between the consolidated ionic
membranes (highlighted by red spheres representing ionic sites)
and the responsiveness to light, resulting in a synergistic enhancement
of the ion transport.

Figure 2. Synthesis and characterization of COF-PtaDha. (a) Synthetic scheme of the free-standing COF membrane (COF-PtaDha) via interfacial
polymerization and the subsequent post-synthetic modification with 1,3-propane sultone to yield COF-PtaDha-SO3K, and (b) SEM images (inset,
a cross-section areal SEM image), (c) XRD patterns (inset, graphic view of AA stacking structure), (d) GIWAXS pattern, and (e) N2 sorption
isotherm collected at 77 K (inset, pore size distribution).
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■ RESULTS AND DISCUSSION
Membrane Preparation and Characterization. We

developed a free-standing porphyrin-based COF membrane,
denoted as COF-PtaDha, through an acetic acid-catalyzed
Schiff-base condensation reaction under interfacial polymer-
ization conditions. This process involved combining an acetic
acid aqueous solution of 4,4′,4″,4‴-(porphyrin-5,10,15,20-
tetrayl)tetraaniline (Pta) with an ethyl acetate-mesitylene
2,5-dihydroxyterephthalaldehyde (Dha) solution (Figure 2a).
The Fourier transform infrared (FT-IR) analysis of COF-
PtaDha revealed a distinctive peak at 1602 cm−1, indicating the
presence of C�N stretching vibrations. Remarkably, the peaks
corresponding to the NH2 and CHO groups of the monomers,
initially at 3273 and 1641 cm−1, respectively, were significantly
reduced, implying a high degree of polymerization within the
membrane (Figure S1). To further validate the formation of
COFs, solid-state 13C nuclear magnetic resonance (NMR)
spectroscopy was employed. The appearance of a C�N signal
at 162.0 ppm in the NMR spectrum (Figure S2) provided
strong evidence for the successful formation of the COF
structure.65 Scanning electron microscopy (SEM) was utilized
to examine the surface morphology of the membrane, revealing
a defect-free structure. This observation indicates that ion
transport occurs exclusively through the inherent pores within
the COF membrane (Figure 2b and Figure S3). A closer
inspection of the cross-sectional morphology, via SEM,
revealed a compact arrangement with a thickness close to
600 nm (Figure 2b, inset). The powder X-ray diffraction
(PXRD) pattern of the free-standing COF-PtaDha membrane
exhibited sharp reflections, suggesting the formation of a highly
crystalline material (Figure 2c). The crystal structure was
confirmed by comparing the experimental data with the
simulated pattern of PBAN arrangement, showing excellent
agreement (Figure 2c, inset, Figure S4, and Table S1). Two-
dimensional grazing-incidence wide-angle X-ray scattering
(GIWAXS) measurements confirmed the crystalline nature
and strong texture of the COF membrane. Notably, the hk0
reflections exhibited peak intensity near the horizon of the
membrane, indicating a predominant orientation of the a−b
plane. This orientation is advantageous, as it ensures that the
COF pores, aligned parallel to the transport direction, remain
unobstructed (Figure 2d). The Brunauer−Emmett−Teller
(BET) surface area of the free-standing COF-PtaDha

membrane, derived from N2 sorption isotherms, was calculated
to be 775 m2 g−1, with a pore size distribution centered at 2.1
nm. These findings align well with the expected characteristics
of the proposed structure (2.1 nm; Figure 2e). To explore the
light-absorption properties of the COF-PtaDha membrane,
ultraviolet−visible (UV−vis) spectroscopy was employed,
revealing a strong absorbance over the UV−vis spectral
range, showing outstanding light-absorption behavior. The
optical bandgap, derived from the corresponding Tauc plot,
was estimated to be 1.46 eV (Figure S5).66 These attributes
underscore the significant potential of COF-PtaDha for
applications in light-driven ion transport.
Investigation of the Opto-ionic Effect of the

Membrane. We subsequently embarked on an exploration
of the capabilities of COF-PtaDha in facilitating ion transport
under illumination. To enhance operability, we affixed the
COF-PtaDha membrane onto a polyacrylonitrile (PAN)
ultrafiltration membrane due to its optical transparency and
flexibility. The light-modulated ionic transport characteristics
of COF-PtaDha were investigated by using a custom-made
conductive cell. In this setup, we positioned the membrane
between two quartz compartments, both filled with identical
solutions of aqueous KCl (Figure 3a). To investigate the
photoresponsiveness of the resulting device, current−time (I−
t) traces were collected under alternating light-on and -off
conditions, using a pair of lightproof shield-protected Ag/AgCl
electrodes (Figure S6). In the absence of light irradiation, the
system maintained a steady state, with minimal electron flow
through the external circuit, attributed to the disparate
diffusion of K+ and Cl− ions.67 Upon illumination of the
membrane, an instantaneous photoionic response became
apparent in the I−t trace, maintaining stability under
prolonged irradiation and reverting to its initial state upon
the cessation of light exposure. Altering the direction of
illumination on the membrane leads to a reversal of the
generated electric current (Figure 3b). One of the notable
findings was the strong correlation between the amplitude of
the photocurrent and both the light intensity of xenon lamps
and the concentration of KCl. Specifically, a photocurrent
density of up to 7.75 μA cm−2 was achieved in a 1 M KCl
environment under the irradiation of a 100 mW cm−2 xenon
lamp. This magnitude was notably 93 times greater than that
observed under dark conditions (Figure 3c and Figure S7). To

Figure 3. Light-controlled ionic responses of COF-PtaDha. (a) Schematic of the experimental setup. COF-PtaDha exhibits the photo-induced ionic
flow directing from illuminated to unilluminated sides. (b) Current−time characteristics of the device measured in the absence of light and under
illumination (100 mW cm−2) with varying light directions. The two quartz compartments are filled with 0.1 M KCl aqueous solutions. “Forward”
and “reverse” denote the direction of light incidence, with “forward” indicating light incident on the membrane facing the organic phase and
“reverse” indicating light incident on the membrane facing the aqueous phase during synthesis. (c) Current−time curves upon illumination with
various intensities of xenon lamp measured at different equimolar concentrations of KCl aqueous solutions spanning a range of 1 mM to 1 M.
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investigate the impact of light wavelength on the intensity of
the light-induced ionic current, we observed that the order of
response was as follows: blue > white > green > red LED lamp.
This sequence corresponds to the maximum-absorption
wavelength observed in the UV−vis spectrum of the COF-
PtaDha membrane (Figure S8).
The observed photogating effects are believed to result from

changes in the driving force for ion transport triggered by light.
These effects can be explained by the concept of the
photoelectric effect, encompassing both photovoltaic (gen-
eration of electric voltage) and photoconductive (change in
conductivity) effects. To uncover the underlying mechanism,
we investigated the photo-induced transmembrane voltage
changes at various KCl concentrations. Interestingly, we found
that as the KCl concentration increases, the magnitude of the
photovoltage decreases, which contradicts the correlation
between the phototriggered ionic current and KCl concen-
tration. This suggests that the increase in the ionic current is
not dependent on the generated photovoltage and can be best
explained by the photoconductive effect. When the COF-
PtaDha membrane is illuminated, light stimulates the
generation of photoexcited electrons and holes. These charge
carriers are capable of migrating within the membrane and
engaging with ions, thereby facilitating ion transport.
Increasing the power density of the Xe lamp amplifies the
photochemical reaction, resulting in the generation of a greater
number of charge-separated entities. Consequently, this
reduces the energy required for ion movement across the
membrane, leading to an augmentation in photo-induced ionic
current (Figure 3c). Furthermore, a discernible linear
correlation between light intensity and photo-induced ionic
current was established (Figure S9). To support this
explanation, we conducted conductance tests under varying
light conditions, revealing a clear disparity between the
current−voltage (I−V) curves obtained under external light
and those acquired in darkness, confirming the generation of
additional surface charge when the membrane is exposed to
light (Figure S10).
Given the significance of temperature gradients in

influencing ion transport, we conducted temperature measure-
ments between the two quartz compartments during our
experiments to assess the potential impact of heat-induced
changes in conductivity. Our measurements revealed a
maximum temperature gradient of 3.5 °C (Figure S11). To
further investigate this effect, we tested the system with a larger
temperature gradient of 5 °C between the compartments and

found that the resulting I−V curve closely matched the original
curve. This observation suggests that the temperature increases
induced by light in the solution do not substantially alter its
conductivity (Figure S12). Although exposure to light did lead
to a slight temperature increase in the COF-PtaDha membrane
due to its photothermal effect, increasing from 23.3 to a peak
of 26.8 °C within 20 s before stabilizing (Figure S13), we can
effectively exclude the impact of this light-triggered membrane
heating. This conclusion arises from the consideration that the
axial temperature gradient resulting from the membrane’s
heating would drive ion transport in a direction opposite to
what was observed in the photocurrent. Therefore, the
temperature gradient created by light-induced heating does
not play a dominant role in terms of explaining the observed
current response.
Photoresponsive Ionic Membrane Preparation and

Characterization. To confer charge screening capabilities
upon the COF-PtaDha membrane, we conducted a series of
post-synthetic modifications. Initially, the membrane was
treated with an ethanol solution of potassium hydroxide,
followed by a subsequent reaction with 1,3-propane sultone.
This chemical process resulted in the attachment of alkyl
chains featuring terminal potassium-sulfonate groups (−SO3K)
onto the pore channels, with the resulting membrane denoted
as COF-PtaDha-SO3K (Figure 2a). To assess the success of
these modifications, various analytical techniques, including
FT-IR and X-ray photoelectron spectroscopy (XPS), were
employed. The verification of post-modification was estab-
lished by observing additional peaks at 1210 and 1035 cm−1 in
the IR spectrum of the COF-PtaDha-SO3K membrane,
corresponding to the S�O stretching vibration (Figure
S14).62 The presence of sulfur signals, specifically S 2p1/2 at
169.5 eV and S 2p3/2 at 167.7 eV, in the XPS profile of the
COF-PtaDha-SO3K membrane, provided further evidence
confirming the presence of sulfonate anions (Figure 4a).
Moreover, the content of ionic sites on the COF-PtaDha-SO3K
membrane was estimated to be approximately 1.19 mmol g−1

based on the relative integral area of the C−S bond in the XPS
spectrum of C 1s. SEM images visually confirmed the intact
morphology of the membrane after the post-synthetic
modification process (Figure S15). Additionally, the PXRD
pattern of the COF-PtaDha-SO3K membrane closely re-
sembled that of the COF-PtaDha, affirming the retention of
the crystalline structure (Figure S16). The BET surface area of
the COF-PtaDha-SO3K membrane, was determined to be 85
m2 g−1, showcasing a decrease compared to the pristine

Figure 4. Characterization and ionic transport properties of COF-PtaDha-SO3K. (a) XPS profiles. (b) Plots of the transference numbers (t) versus
various KCl concentration differences, whereby the low-concentration side is set as 0.1 mM. (c) Conductivity versus KCl concentration. The ionic
conductivity deviates from the bulk value (dashed line) in the low-concentration region, suggestive of surface-charge governed ion transport.
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membrane. This reduction is attributed to the additional mass
introduced during the post-modification process (Figure S17).
To assess the permselectivity of COF-PtaDha-SO3K, we

collected I−V curves under varying KCl concentration
gradients. One compartment maintained a constant KCl
concentration of 0.1 mM, while the other compartment
experienced an increase from 0.5 mM to 0.5 M (Figure S18).
An investigation into the impact of introduced ionic sites was
conducted by comparing the permselectivities of COF-PtaDha
and COF-PtaDha-SO3K. Figure 4b illustrates the transference
numbers (t) for both COF-PtaDha and COF-PtaDha-SO3K,
plotted against the concentration difference. Notably, COF-
PtaDha exhibited minimal charge selectivity, with t values
approaching 50% even at a concentration difference of 50. On
the contrary, the incorporation of negative potassium-sulfonate
groups into COF-PtaDha markedly improved its permselec-
tivity, reversing it from anion selectivity to cation selectivity.
The permselectivity approached 1 for salt concentration
disparities below 50 and remained at 0.82, even at a
concentration differential of 1000.
To comprehend the origin of the charge selectivity of COF-

PtaDha-SO3K, we measured ion conductance by exposing the
membrane to equimolar KCl solutions spanning concen-
trations from 0.01 mM to 3 M. Plotting conductance against
KCl concentration revealed a notable deviation of trans-
membrane conductance from the bulk value (represented by
the dashed line) at KCl concentrations below 10 mM (Figure
4c and Figure S19). This suggests that under these specific
conditions, ion transport is predominantly governed by surface
charge effects. Transmembrane conduction approximated bulk
values as KCl concentrations increased, which is attributed to
the diminishing influence of the electric double layer (EDL) at
higher salt concentrations, thereby weakening the surface-
charge-dependent ion transport (Table S2).
Enhancing Ionic Power Generation through Solar-

Salinity Synergy. The exceptional permselectivity and opto-
ionic effects of COF-PtaDha-SO3K have led to exploration of
its use in ionic power generation via solar-salinity synergy. To
mimic the salinity gradients commonly found in estuaries, we
employed NaCl solutions with concentrations of 0.5 and 0.01
M. This choice is driven by the fact that each cubic meter of
seawater and river water contains a substantial energy reserve
of up to 2.3 MJ. Reversed electrodialysis (RED) stands out as a
well-established and effective method for converting ionic

power into electricity. The power generated through this
process can be effectively harnessed by utilizing external load
resistors (RL). As depicted in Figure 5a, we observe how the
diffusion current decreases with increasing resistance (RL),
ultimately reaching its peak value of 10.8 ± 0.5 W m−2 at a
resistance value of 7 kΩ. Taking into account the previously
mentioned opto-ionic effects, we anticipated that light-induced
electrons would synergize with the −SO3K groups, facilitating
cation transport and thereby enhancing ion selectivity and
conductivity. Indeed, upon exposure to light (as demonstrated
in Figure 5b), there were noticeable enhancements in both the
open-circuit voltage (Voc) and the short-circuit current (Isc). As
a result, the power density was determined to be 1.7 times
greater than in the absence of light, surpassing the performance
of most advanced membrane technologies currently available
(as detailed in Table S3). Furthermore, under illumination, the
resistance of the COF-PtaDha-SO3K decreased to 4 kΩ
(Figure 5b). These findings indicate that the output power
density of RED can be significantly increased during daylight
hours by directing sunlight onto the membranes. To elucidate
the role of PAN in the generated output power density, we
evaluated its performance. Our analysis revealed that the
output power density generated solely by PAN accounts for
only 1.4% of the total output power density of COF-PtaDha-
SO3K/PAN, highlighting the negligable contribution of the
PAN membrane to the overall output power density (Figure
S20). Furthermore, the RED system exhibited remarkable
stability, consistently outputting nearly 40 cycle series, thereby
showcasing promising prospects for practical applications
(Figure 5c).

■ CONCLUSION
In summary, this study has showcased a conceptual
demonstration of novel photoresponsive ionic membranes
optimized for superior ionic power generation. Our findings
underscore the profound influence of opto-ionic effects in
amplifying ion conductivity and diminishing membrane
resistance. This culminates in a marked enhancement of the
power density of the RED device. This study illuminates the
synergistic interplay of various components in energy trans-
duction at the nanoscale within synthetic structures, heralding
a new frontier for innovative and practical applications.
Additionally, the adaptability of COF materials underscores a
promising avenue for multifunctional integration, heralding

Figure 5. Solar-salinity synergy of COF-PtaDha-SO3K and stability of the corresponding RED device. (a) Power output to an external circuit
supplying an electronic load for COF-PtaDha-SO3K before and after illumination under a 100 mW cm−2 xenon lamp, along with the corresponding
variation of diffusion current. The two quartz compartments were filled with 0.01 and 0.5 M NaCl aqueous solutions, respectively. The resistance of
COF-PtaDha-SO3K decreased upon illumination. (b) I−V plots for COF-PtaDha-SO3K recorded in 0.01/0.5 M NaCl concentration difference
before and after illumination. (c) Cycle series of the output power density of the RED device recorded in 0.01/0.5 M NaCl concentration
difference under the illumination of a 100 mW cm−2 xenon lamp.
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exhilarating opportunities for future scientific exploration and
technological breakthroughs.

■ EXPERIMENTAL SECTION
Fabrication of the Free-Standing COF-PtaDha Membrane.

The free-standing COF-PtaDha membrane was synthesized via acid-
catalyzed interfacial polymerization of Pta and Dha. The Dha-ethyl
acetate-mesitylene solution (5.0 mg, 0.03 mmol in 4 mL, V/V = 1/9)
was gently placed on top of the phosphate-acetic acid aqueous
solution (10.15 mg, 0.015 mmol in 4 mL of 3 M acetic acid solution).
The system was kept at 35 °C for 3 d. The free-standing COF-PtaDha
membrane was obtained after being washed thoroughly with water
and acetone in sequence to remove any residual monomers and the
catalyst, which was further rinsed with H2O for 24 h for permeation
tests and air-dried for physicochemical characterization.
Fabrication of the Free-Standing COF-PtaDha-SO3K Mem-

brane. The free-standing COF-PtaDha membrane was treated with
0.05 M KOH ethanol solution for 5 h and then washed thoroughly
with ethanol. After that, the resulting membrane was soaked in a 0.05
M 1,3-propane sultone ethanol solution at 35 °C overnight. During
this process, 1,3-propane sultone facilitated ring opening and the
phenol oxygen anion nucleophilically attacked the α position of the
sultone oxygen. This chemical transformation resulted in the
incorporation of alkyl chains bearing terminal potassium-sulfonate
groups (−SO3K) into the pore channels of the membrane. The free-
standing COF-PtaDha-SO3K membrane was obtained after being
washed with water and acetone in sequence to remove any residual
monomers and the catalyst, which was further rinsed with H2O for 24
h for permeation tests and air-dried for physicochemical character-
ization.
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