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ABSTRACT: Improving the water stability of metal−organic frameworks
(MOFs) is essential for their use in water pollution treatment and
environmental remediation, though it remains technically challenging.
Herein, we report a novel cationic MOF constructed with
[Th6O4(OH)4(COO)12] units and [CoN4·Cl2] units possessing a ftw-type
topology (denoted as 1−Th-Co). 1−Th-Co itself exhibited poor water
stability but excellent stability following a palladium(II) modulation
strategy. Experimental studies reveal that Co(II) ions in 1−Th-Co were
replaced by Pd(II) ions through cation exchange in N,N-diethylformamide
(yielding 1−Th-Pd). The planar PdN4 units in 1−Th-Pd were responsible
for improving the water stability of the framework. As a result, 1−Th-Pd
offered excellent stability, fast adsorption kinetics, and high removal ratios
for 99TcO4

− and ReO4
− (as a 99TcO4

− surrogate) in contaminated water. When used in packed columns, 1−Th-Pd can dynamically
capture ReO4

− from groundwater. This work provides a new avenue for improving the water stability of MOFs, offering new vistas
for the decontamination of aqueous solutions containing 99TcO4

− and ReO4
−.

■ INTRODUCTION
As a structurally diverse family of crystalline porous materials,
metal−organic frameworks (MOFs) nowadays find widespread
application in catalysis,1−4 gas storage and gas separation,5−10

sensing,11−14 uranium extraction from seawater,15,16 environ-
mental remediation,17−19 and extraction metals for nuclear
industry,20 among others. MOFs can also be used as
adsorbents for metal ion removal from contaminated water
resources.21−25 However, instability in water is a limitation of
many MOFs, since water molecules can coordinate to metal
nodes in MOFs and replace the organic linkers, thus leading to
structural collapse.26−30 Various efforts have been made to
improve the water stability of the MOFs. Zhang et al. able to
improve the water stability of MOF-5, HKUST-1, and ZnBT
by coating a thin layer of hydrophobic polydimethysiloxane on
the surface of MOF nanocrystals.31 Other hydrophobic
polymers, such as fluorine-rich and Si-based polymers, have
been explored as waterproof layers to produce water-stable
MOFs.32,33 However, the drawback of using hydrophobic
polymer coating strategies is that they hinder contact with
target metal ions in water, thus lowering the adsorption
kinetics, adsorption capacities, and (or) adsorption selectivity.
Alternatively, another common approach is the direct synthesis
of Zr cluster-based MOFs, which possess very strong binding
affinity between Zr and organic linkers.34−39 However, most of
the reported water-stable Zr-based MOFs are neutral frame-

works, rendering them unsuitable for the capture of metal
cations or metal-containing anions from water solutions.

Taking the above into account, the key to resolving the
water instability of MOFs lies in improving the binding affinity
between metal nodes and organic linkers, while decreasing
metal node-water coordination ability. Furthermore, designing
MOFs with specific pore dimensions and chemical character-
istics can enable the selective adsorption of target metal ions
from an aqueous solution. Herein, we present a general and
effective approach for improving the water stability of MOFs,
involving using a facile palladium(II) modulation strategy to
improve the water stability of a Th/Co bimetallic MOF. First,
1−Th-Co with dodecahedral [Th6O4(OH)4(COO)12] units
and octahedral [CoN4·Cl2] units was synthesized through a
solvothermal approach (Figure 1a−c). 1−Th-Co gradually lost
its crystallinity when immersed in water. Fortunately, the
[CoN4·Cl2] units could be replaced by PdN4 units through a
cation exchange process, which generated a Th/Pd bimetallic
MOF (denoted as 1−Th-Pd). 1−Th-Pd crystals were not
accessible via the direct reaction of Pd and Th metal precursors
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under solvothermal conditions but were readily obtained via
the ion exchange route (Figure 1c). 1−Th-Pd showed
excellent water stability in an aqueous solution. Notably, the
cationic framework 1−Th-Pd can rapidly remove low
concentrations of 99TcO4

− and ReO4
− (the nonradioactive

analog of 99TcO4
−) from aqueous solutions. Insights from this

study can be generalized to a variety of Pd-based MOFs,
providing new avenues to improve the water stability of MOFs.

■ MATERIAL AND METHODS
Synthesis of 1−Th-Co. A mixture of Th(NO3)4·xH2O (0.1

mmol, 58.8 mg), CoCl2·6H2O (0.2 mmol, 47.6 mg), 4-pyridine-4-
hydroxybenzoic acid (INB) (0.3 mmol, 59.8 mg), and 20 μL of 68%
HNO3 in N,N-dimethylformamide (DMF, 5 mL) were sealed in a 25
mL glass bottle. The bottle was heated at 120 °C for 24 h under
autogenous pressure and then cooled to room temperature under
ambient conditions. Pink crystals were obtained and were washed
with DMF.

Synthesis of 1−Th-Pd. Crystals of 1−Th-Co (25 mg) were
immersed in 5 mL of a N,N-diethylformamide (DEF) solution
containing Pd[(CH3CN)2Cl2] (20 mg), and the resulting mixture
slowly stirred at room temperature for 21 h under a N2 atmosphere.
Golden yellow crystals were obtained and washed with DEF to
remove excess Pd(II).

■ 99TCO4
− AND REO4

− ADSORPTION EXPERIMENTS
Caution! 99Tc is a β-emitter (Emax = 0.29 MeV). All operations
relating to the handling of this substance were performed in a
licensed radiochemical laboratory.

99TcO4
−/ReO4

− Adsorption Studies. Adsorption experi-
ments were carried out at a fixed adsorbent/liquid ratio of 1 g/
L at 25 °C. 1−Th-Pd was dispersed in a solution containing
∼5 ppm of 99TcO4

−. Aliquots were collected at regular time
intervals while constantly stirring the dispersion. The
adsorbent was collected on a 0.22 μm membrane filter, and
99TcO4

− in the filtrate was quantified using a liquid scintillation
counting (LSC) system. A solution containing ∼10 ppm of
ReO4

− was used to verify the 99TcO4
− uptake results, with the

ReO4
− concentration in the filtrate quantified spectrophoto-

metrically at 396 nm following reaction with the chromogenic
agents KSCN and SnCl2·2H2O (chromogenic method). The
adsorption experiments in ∼1 ppm ReO4

− solution and ∼5
ppm groundwater solution (as a proxy for 99TcO4

−) were
carried out under similar conditions. The concentrations of
ReO4

− were determined by ICP−MS (∼1 ppm of ReO4
−

solution) and chromogenic method (∼5 and ∼10 ppm of
ReO4

− solution).
Reusability Study. After ReO4

− adsorption experiments
(∼5 ppm), 1−Th-Pd was immersed in 10 mL of a saturated
NaCl solution at 25 °C overnight, followed by washing with
distilled water. Then, the 1−Th-Pd was subsequently returned
to an aqueous solution containing ∼5 ppm of ReO4

− for
further adsorption tests.
Dynamic ReO4

− Adsorption Studies. ReO4
− break-

through experiments were conducted by using a laboratory-

Figure 1. (a) Th6O4(OH)4(CO2)12 unit. (b) Coordination environ-
ment of CoN4·Cl2 unit. (c) Single open frameworks of 1−Th-Co and
1−Th-Pd, with the latter being synthesized by replacement of [CoN4·
Cl2] units with PdN4 units. Cl atoms were omitted for clarity in (c).

Figure 2. (a) Photograph of crystals of 1−Th-Co. (b) View of the dodecahedral Th6O4(OH)4(CO2)12 unit and quadrilateral CoN4 unit. (c) 3D
framework of 1−Th-Co. (d) Topological representation of ftw nets. Cl atoms were omitted for clarity in parts (b−d).
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scale fixed-bed reactor at 25 °C. 1−Th-Pd (100 mg) was
packed into a quartz column (3.4 mm inside diameter, 1.6 mm
wall thickness, 102 mm length) with degreased cotton wool
filling the void space. Next, ReO4

− spiked groundwater (∼5
ppm) was flowed through the adsorbent column. The effluent
from the adsorbent column was quantified by a chromogenic
method. Under similar test conditions, degreased cotton wool
was used as a blank for comparison.

■ RESULTS AND DISCUSSION
Synthesis and Characterization of MOFs. The 1−Th-

Co was synthesized via the reaction of Th(NO3)4·xH2O,
CoCl2·6H2O, and 4-pyridine-4-hydroxybenzoic acid (INB) in
a solvent mixture of DMF and HNO3 at 120 °C for 24 h. This
yielded pink cubic crystals (Figure 2a). X-ray crystallography
(SCXRD) showed that 1−Th-Co crystallizes in the cubic
space group P4̅3m (Table S1). One prominent structural
feature of 1−Th-Co is the presence of two kinds of metal
units, including a [Th6O4(OH)4(COO)12] unit and an
o c t a h e d r a l C o ( I I ) u n i t ( F i g u r e 2 b ) . T h e
[Th6O4(OH)4(COO)12] unit acts as a single node and binds
to oxygen atoms of four μ3-O, four μ3−OH, and 12 carboxyl
groups on the INB linkers. Each octahedral Co(II) unit is
coordinated by the nitrogen atoms of four pyridine rings and

two chloride atoms (Figure 2b). It is interesting to note that
eight [Th6O4(OH)4(COO)12] units and six [Co(II)N4] units
are connected together by 24 INB ligands into a cavity which
can be filled by a ball with a diameter of 7 Å (Figure 2c). Each
face of the cavity is commonly shared with an adjacent cavity
to form a cationic three-dimensional framework with a ftw-type
topology (Figure 2c,d). These cationic cavities are perma-
nently porous and capable of binding anions such as 99TcO4

−

and ReO4
− with rapid adsorption kinetics.

Powder X-ray diffraction (PXRD) confirmed the bulk purity
of 1−Th-Co (Figure 3a). Thermogravimetric analysis (TGA)
demonstrated that the framework was stable up to ∼300 °C
(Figure S1). The crystallinity of 1−Th-Co gradually
disappeared upon immersing the sample in aqueous solution
(Figure 3b). PXRD further confirmed this collapse by the
disappearance of all of the diffraction peaks (Figure 3a).
S i m i l a r t o [ Z r 6 O 4 ( O H ) 4 ( C O O ) 1 2 ] u n i t s ,
[Th6O4(OH)4(COO)12] units are generally stable toward
water. However, the [Co(II)N4] unit is prone to decom-
position by water.26 This prompted us to try and stabilize the
cavity-based framework by replacing the [Co(II)N4] unit with
other more water-tolerant metal-containing units.

We noticed that the introduction of planar [Pd(II)N4] units
can dramatically improve the stability of MOFs in water.33 A

Figure 3. (a) PXRD patterns of 1−Th-Co. (b) Photographs of 1−Th-Co crystals in deionized water. (c) Photographs of 1−Th-Co in a
Pd[(CH3CN)2Cl2]/DEF solution during ion exchange. (d) PXRD patterns of 1−Th-Pd. (e) Photographs of 1−Th-Pd in deionized water. (f) XPS
survey spectra for 1−Th-Co and 1−Th-Pd. (g) Pd 3p XPS spectrum of 1−Th-Pd. (h) ICP-MS analyses of 1−Th-Co and 1−Th-Pd showing that
the molar ratio of Pd:Th in 1−Th-Pd was 1:4 after the ion exchange step.
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new heterometallic framework with Th and Pd centers was
obtained after soaking 1−Th-Co in a mixture of Pd-
[(CH3CN)2Cl2]/DEF for 21 h. As shown in Figures 1c and
3c, the original pink color of 1−Th-Co gradually transformed
to green over 8 h, with golden yellow crystal obtained as the
soaking time increased up to 21 h (yielding 1−Th-Pd).
SCXRD and PXRD data revealed that the framework of 1−Th-
Pd was isomorphous to 1−Th-Co, with unit cell parameters of
a = b = c = 21.73 Å, α = β = γ = 90° (Figure 3d, Table S1).
The complete substitution of Co with Pd was verified by X-ray
photoelectron spectroscopy (XPS), with the Co signals being
replaced with Pd signals (Figure 3f). Since Pd 3d XPS signals
overlap with the Th 4f peaks, we used the Pd 3p spectrum to
investigate the valence state of palladium in 1−Th-Pd. The Pd
3p spectrum showed peaks at 533.2 and 561.7 eV, in a 2:1 area
ratio, which could readily be assigned to the Pd 3p3/2 and Pd
3p1/2 signals, respectively, of a Pd(II) species (Figure 3g).40,41

Furthermore, inductively coupled plasma mass spectrometry
(ICP-MS) analyses showed that the Pd:Th molar ratio was 1:4,
identical to the Co:Th ratio of 1:4 in the parent 1−Th-Co
framework, further confirming the success of the ion exchange
process (Figure 3h). 1−Th-Pd exhibited similar thermal
stability to 1−Th-Co with heating under a N2 atmosphere
(Figure S1). We further evaluated the chemical stability of 1−
Th-Pd by soaking the MOF crystals in deionized water. The
photographs revealed that the crystalline structure of the MOF
was retained after 48 h with no obvious structural collapse
(Figure 3e). Spurred on by this success, we further conducted
a series of detailed experiments to assess the anionic
radionuclide adsorption performance of 1−Th-Pd.

■ 99TCO4
− AND REO4

− UPTAKE PROPERTIES
The nuclear energy industry has the potential to cause many
environmental problems. Leakage of radionuclides such as
99TcO4

− from incorrectly stored nuclear wastes can penetrate
the underground and contaminate groundwater. Due to its
high water-solubility and noncomplexation, 99TcO4

− can be
easy to spread into the environment, leading to threats to
fragile ecosystems and human health.42−45 Therefore, it is of
great importance to eliminate 99TcO4

− from contaminated
water. An adsorbent-to-liquid ratio of 1−Th-Pd was
determined to be 1 g/L, which was used for further adsorption
studies (Figure S2). The 99TcO4

− adsorption ability of 1−Th-
Pd was first examined in NH4TcO4 solutions at an adsorbent-
to-solution ratio of 1 g/L. As expected, 1−Th-Pd demon-
strated fast adsorption kinetics, achieving an equilibrium
removal percentage of >93.7% in a ∼ 5 ppm 99TcO4

− solution
(Figure 4a). Due to the scarcity, limited availability, and
radioactivity of 99TcO4

−, ReO4
− as a nonradioactive surrogate

with identical charge density and similar anion exchange
properties was used for subsequent adsorption studies.25,46−52

Adsorption experiments using 1−Th-Pd were conducted in a
∼ 10 ppm ReO4

− aqueous solution. As shown in Figure 4a, the
adsorption kinetics for ReO4

− were almost identical to those of
99TcO4

− under the same conditions. Further, 1−Th-Pd can
effectively remove ∼100% of ReO4

− from ∼1 ppm of polluted
water (Figure 4b). On the basis of these results, we
subsequently performed adsorption experiments in ReO4

−-
contaminated groundwater and tap water. 1−Th-Pd is able to
remove ReO4

− (∼5 ppm) to the drinking water level (0 ppb)
within 30 s in groundwater (Figure 4c). Moreover, the removal
ratio of 1−Th-Pd reached ∼80% in ∼5 ppm of ReO4

−-

contaminated tap water (Figure S3). Next, dynamic ReO4
−

capture breakthrough experiments were performed from
contaminated groundwater using 1−Th-Pd-packed columns.
As shown in Figure 4d, 1−Th-Pd can effectively remove
ReO4

− from groundwater under slow column elution
conditions (0.2 mL/min), reaching equilibrium after ∼150
min. The calculated dynamic adsorption capacity was ∼1.42
mg/g. Notably, 1−Th-Pd exhibited an efficient dynamic
ReO4

− capture performance even at very low concentrations
of ReO4

−, indicating that it is a promising adsorbent for
practical removal of 99TcO4

− from contaminated water sources.
The FT-IR spectrum of used 1−Th-Pd showed a new signal at
906 cm−1 after the adsorption experiments,53,54 indicating that
the Cl− ions in 1−Th-Pd were successfully exchanged by
ReO4

− ions (Figure 4e). The adsorption capacity of 1−Th-Pd
showed almost no decrease over four cycles in ∼5 ppm of
ReO4

− solutions, confirming good sorbent durability (Figure
4f). Photographs confirmed that 1−Th-Pd maintained its
crystallinity after the ReO4

− adsorption experiments (Figures
S4−S6).

Considering the aforementioned findings, it can be
concluded that the Pd(II) exchange strategy introduced herein
successfully modified a water-unstable framework 1−Th-Co
into an extremely water-stable framework 1−Th-Pd. In
comparison to Co(II)N4 units, we established that the
Pd(II)N4 unit is resistant to moisture, therefore improving
the stability of the MOF framework. We expect this finding will

Figure 4. (a) 99TcO4
− and ReO4

− adsorption kinetics on 1−Th-Pd at
initial 99TcO4

− and ReO4
− concentrations of ∼5 and ∼10 ppm,

respectively. (b) ReO4
− adsorption kinetics on 1−Th-Pd in ∼1 ppm

of ReO4
− solution. (c) ReO4

− adsorption kinetics on 1−Th-Pd in ∼5
ppm of ReO4

− contaminated groundwater. (d) Experimental column
breakthrough curves for ReO4

− spiked groundwater in an absorber
bed packed with 1−Th-Pd. (e) FT-IR spectra of 1−Th-Pd before and
after adsorption of ReO4

− and after elution with a saturated NaCl
solution. (f) Recycle test data for ReO4

− removal in groundwater.
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be of considerable interest to the MOF community. The
adsorption of ReO4

−/99TcO4
− relies on cationic MOFs with

high water stability, with our water-stable 1−Th-Pd MOF
likely to be suitable for the selective extraction of
ReO4

−/99TcO4
− from contaminated and wastewater.

■ CONCLUSIONS
In conclusion, we have designed and synthesized a Th/Pd
bimetallic MOF (1−Th-Pd), isoreticular to the Th/Co MOF
(1−Th-Co) through ion exchange methods. Due to the
mo i s t u r e r e s i s t a n t p e r f o rman c e o f bo t h t h e
[Th6O4(OH)4(COO)12] units and [PdN4] units, 1−Th-Pd
showed outstanding water stability. Benefiting from a cationic
framework, extraordinary water stability, and a porous
structure, 1−Th-Pd displayed fast adsorption kinetics and
∼100% 99TcO4

−/ReO4
− removal capacity at low concen-

trations (∼1 and ∼5 ppm) in contaminated water. This study
conclusively demonstrates an effective design strategy for the
generation of functional MOFs with high water stability for the
selective removal of target anions from aqueous solutions.
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