SCIENTIA SINICA Chimica

亮点介绍

chemcn.scichina.com

柔性二维层状穿插框架对碘甲烷的高效捕获

郝梦婕¹,杨慧^{1*},王祥科^{1*},马胜前^{2*}

华北电力大学环境科学与工程学院,北京 102206
北德克萨斯大学化学系,德克萨斯州 76201

*通讯作者, E-mail: h.yang@ncepu.edu.cn; xkwang@ncepu.edu.cn; shengqian.ma@unt.edu

收稿日期: 2024-09-19; 接受日期: 2024-09-26; 网络版发表日期: 2024-11-18

核能作为高效、清洁、低碳的能源,能有效缓解 全球日益增长的能源需求.核电运行产生的核废料中 包含大量放射性核素,一旦泄露,将对环境造成极大 的危害,其中气态放射性碘是重要的核裂变产物,主 要包括¹²⁹I和¹³¹I,在核安全领域受到广泛关注^[1].¹²⁹I具 有半衰期长(1.6×10⁷年)和流动性强的特点,在超过百 万年时间尺度上造成潜在且持久的放射性污染^[2].放 射性碘以易挥发的碘单质和有机碘化合物(0~10%)的 形式存在,其中有机碘的化学稳定性较高以及处理浓 度极低,造成去除工艺复杂、对吸附材料要求极高^[3]. 目前开发的先进有机碘捕获材料通常制备过程复杂、 捕获效率较低、生产成本较高,限制了其广泛应用.因 此,开发高效、低成本的新型有机碘捕获材料,对于维 护核能发展和环境安全至关重要^[4].

近日,苏州大学王殳凹教授课题组采用晶体工程 构建了双交叉柱撑层MOF框架(SCU-20),利用该柔性 框架"滑轨状"孔道及层间弹性收缩性质,暴露出多个 可接近的活性位点,从而对碘甲烷(CH₃I)形成强相互 作用力^[5] (图1(a)). SCU-20在348 K下显示出高CH₃I吸 附能力,超过了大多数报道的相同实验条件下的材料. 此外,SCU-20在湿度和高水平辐射条件下对CH₃I的吸 附性能不受到影响,表明其在核废物处理中的应用潜 力.通过柱穿透实验,SCU-20在极低浓度下有效捕获 CH₃I,表明柔性"滑轨状"孔道和丰富可及的活性位点 在捕获CH₃I中起着至关重要的作用, SCU-20有望在后处理工艺碘污染治理方面实现应用.

吸附材料上多个结合位点有利于增强材料与CHAI 之间的相互作用、可扩展的弹性孔道可以促进材料和 CH₄I分子之间的吸附响应关系.因此,作者通过复杂 的网状化学将多个极性位点引入框架材料,并结合柔 性孔隙结构、采用水热和沉积结合技术合成了二维柔 性层状穿插框架材料,其具有优异的拓扑晶体结构. 粉末X射线衍射(PXRD)表明合成的晶体材料是纯相, 在195 K下进行的CO2吸附/解吸等温线和不同客体溶 剂诱导SCU-20可逆结构转变后的PXRD证明了材料的 柔性.此外,丰富的裸露氮位点以及氟位点能够与CH₄I 形成强相互作用力.因此,SCU-20能够从乏核燃料 (UNF)后处理中捕获碘物种. 吸附实验表明, SCU-20 具有1.84 g/g的CH₃I静态吸附能力(图1(b)),尤其在极 低浓度(20~25 ppm)的动态体系下仍具有优异的CH₃I 捕获能力,超越了绝大多数已报到的CH₃I吸附材料.同 时, SCU-20的CH₃I捕获能力几乎不受环境湿度和高剂 量辐照的影响(图1(c)).

多种先进表征技术证实了CH₃I分子和SCU-20之间的稳定的分子间相互作用.基于CH₃I与骨架中未配位的亲核N位点之间的甲基化反应和F位点强烈的静电相互作用,CH₃I和富含N和F的层状框架发生强烈的电荷转移.SCU-20在吸附CH₃I后发生了较为明显的晶

引用格式: Hao M, Yang H, Wang X, Ma S. Construction of flexible interdigitated layered framework for high-performance CH₃I capture. *Sci Sin Chim*, 2024, 54: 2323–2324, doi: 10.1360/SSC-2024-0217

图 1 (网络版彩图)柔性二维层状穿插框架对碘甲烷的高效捕获^[5]. (a) 可调双活性位点结构示意图; (b) 在348 K下SCU-20对 CH₃I的吸附性能; (c) 辐照后和高湿度下CH₃I饱和吸附量; (d) 合成SCU-20、活化SCU-20和CH₃I@SCU-20的PXRD图 **Figure 1** (Color online) Construction of flexible interdigitated layered framework for high-performance CH₃I capture [5]. (a) Schematic illustration of the dual-active sites in an adjustable structure; (b) CH₃I adsorption on SCU-20 measured at 348 K; (c) CH₃I saturated adsorption capacities in high humidity -and irradiation. (d) PXRD patterns of as-synthesized SCU-20, activated SCU-20, and CH₃I@SCU-20.

格收缩,表明其具有一定的自适应能力,能够将CH₃I固 定在"滑轨状"孔道中(图1(d)).进一步的理论计算也证 明了SCU-20对CH₃I的吸附机制为吡嗪中未配位的氮 与CH₃I的甲基化反应以及氟原子对CH₃I的物理吸附 作用,材料的柔性与高密度活性位点的有机结合使得 SCU-20对CH₃I具有优异的捕获能力.

此工作通过原位组装N和F原子构建多位点、弹性

空间的先进材料SCU-20,提出了高效捕获有机碘的方法策略,显示出创纪录的CH₃I吸附量(1.84 g/g).同时模拟真实废气后处理条件的突破性实验使SCU-20具有实际UNF操作的可行性,攻克了有机碘难以捕获的难题. SCU-20具有双位点的柔性二维层状穿插结构与CH₃I之间强大客体相互作用,展示了从核废料中有效捕获有机碘的前景,也为新型碘捕获材料设计提供了新的思路.

参考文献

- 1 Riley BJ, Vienna JD, Strachan DM, McCloy JS, Jerden Jr. JL. J Nucl Mater, 2016, 470: 307–326
- 2 Liu X, Zhang Z, Shui F, Zhang S, Li L, Wang J, Yi M, You Z, Yang S, Yang R, Wang S, Liu Y, Zhao Q, Li B, Bu X, Ma S. *Angew Chem Int Ed*, 2024, 63: e202411342
- 3 Hao M, Xie Y, Lei M, Liu X, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. J Am Chem Soc, 2024, 146: 1904–1913
- 4 Xie Y, Pan T, Lei Q, Chen C, Dong X, Yuan Y, Maksoud WA, Zhao L, Cavallo L, Pinnau I, Han Y. Nat Commun, 2022, 13: 2878
- 5 Tai B, Li B, He L, Ma Z, Lin S, Zhang M, Chen J, Wu F, Chen L, Dai X, Ma F, Chai Z, Wang S. Sci China Chem, 2024, 67: 1569–1577