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Advancing porous materials for
radioiodine capture
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1. Introduction

Radioactive iodine ('*°T and '*'I) primarily originates from nuclear fission
reaction [1]. %I has a long half-life (15.7 x 107 years) and significant
environmental persistence, while '3'1, with a shorter half-life (8 d), is highly
biologically active and can accumulate in the thyroid, creating health risks [1, 2].
Both pose ongoing threats to human health and ecosystems if not adequately
contained. During the operation of nuclear power plants, nuclear weapons testing,
and spent fuel reprocessing, radioactive iodine can exist in the gas phase

(I, CH3I) and liquid phase (I, 1037) [3]. Therefore, the implementation of
effective measures to capture and contain these different forms of radioactive
iodine is essential.

The capture principles of iodine and radioactive iodine are fundamentally
similar, relying on physical adsorption, chemical adsorption, and chemical
reactions. lodine capture methods include physical adsorption [4], chemical
adsorption [5], ion exchange [3], and complexation [6], etc. Porous materials
exhibit different gaseous and liquid-phase iodine capture mechanisms, depending
on their pore structure, surface chemistry, and iodine’s physicochemical state. For
gaseous iodine removal, physical and chemical adsorption methods dominate.
Pore design plays a crucial role in physical adsorption, leveraging high surface
area and abundant porosity. Notably, micropores (<2 nm) are critical, as their size
closely matches iodine’s van der Waals radius (~4.5 A), enabling exploitation of
van der Waals interactions that enhance the adsorption capacity. Chemical
adsorption involves several mechanisms: (i) electron-rich functional groups (e.g.
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aromatic rings, nitrogen heterocycles) facilitate adsorption via 7—m interactions or
charge transfer effects [7, 8]; (ii) nitrogen-containing sites (e.g. imidazole,
triazine, pyridine) enhance I,/I3~ capture through hydrogen bonding or
electrostatic interactions [8, 9]; (iii) active sites such as unsaturated metal oxides
centers provide additional adsorption energy and reactivity [10], improving iodine
fixation. Besides physical adsorption, ion exchange and complexation play key
roles in liquid-phase systems. Porous materials with exchangeable ions (e.g. C17)
can capture iodine via ion exchange, while specific metal ions, such as Ag™, react
with I™ to form insoluble Agl precipitates, ensuring effective iodine sequestration.
Besides, radioactive iodine capture emphasizes irreversible fixation, long-term
stability, secondary pollution release prevention, and geological sequestration.
This is typically achieved using chemically stable materials or immobilization
methods like vitrification [11] and ceramic doping [12].

However, research on the capture of iodine still faces several challenges,
including: (i) low capture efficiency of traditional adsorbents; (ii) inadequate
adsorbent stability under extreme conditions (e.g. high temperature, high
humidity, and radiation exposure); (iii) low CH3I concentrations and weak
intermolecular forces; (iv) scalability and cost-effectiveness. Therefore, the
development of efficient and stable adsorbent materials for radioiodine in its
various forms is of significant practical importance.

In recent years, significant progress has been made in the capture of gas-phase
and aqueous iodine. Porous materials (e.g. covalent organic frameworks (COFs)
[13, 14], porous organic polymers (POPs) [15], porous organic cages (POCs)
[16], metal-organic frameworks (MOFs) [17, 18], and certain inorganic porous
materials [19-21] have notably enhanced the field of iodine capture due to their
exceptional adsorption capacity, excellent structural designability, and broad
potential for functionalization to allow selective capture of iodine species. Various
innovative strategies in material design and optimization have been introduced to
address the challenges faced in iodine capture.

2. Application of porous materials in iodine capture

To address issues of low iodine capture efficiency and material instability, Guo
et al [22] first reported that a string of 2D COFs with quasi-three-dimensional
(QTD) topologies and coliform-like crystalline forms. These materials possess
inimitable ‘stereoscopic’ trilateral pores, flexible construction blocks, and large
interlayer spacings (figure 1(a)), which enable QTD-COFs to exhibit faster iodine
adsorption rates than traditional 2D COFs. QTD-COF-V achieves an adsorption
capacity of 6.29 g g~! (75 °C, 1 bar), and maintains 6.02 g g~ ! after irradiation,
demonstrating its potential for radioactive iodine capture under real-world
conditions. Furthermore, the study elucidates the iodine capture mechanism and
transport pathways through Raman spectroscopy, FI-IR, and XPS analyses.
Iodine molecules can simultaneously enter the Q-3D channels of the material
through both the top and lateral surfaces, interacting with the electron-rich
conjugated system to form Is~ charge-transfer complexes. The flexible
framework of the QTD-COFs can adaptively adjust the pore size to facilitate
iodine diffusion. Ultimately, the synergistic effects of physical confinement and
chemical bonding enable the stable immobilization of iodine, significantly
enhancing the adsorption rate and capacity of iodine. By introducing N-sites into
the structure, the affinity for both I, and CH3I can be greatly enhanced. Xie et al
[9] developed ACOF-1, featuring an anti-parallel AA stacking structure

(figure 1(b)) and excellent radiation resistance. Pyridine-N and hydrazine units in
the pores enable dynamic adsorption capacities of CH3I for ~0.74 g g~ ! and I,
for ~2.16 g g~ ! at 25 °C. Additionally, the methylated cationic framework
ACOQF-1 R purifies iodine-contaminated groundwater to potable levels rapidly,
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Figure 1. (a) The unique oblique triangular pores of QTD-COFs. [22] John Wiley & Sons.© 2020
Wiley-VCH GmbH. (b) Schematic illustration of anti-parallel AA stacking in COF-based
adsorbents, showing how antiparallel stacked layers form three-dimensional ‘multi-N nanotraps’ for
iodine species, significantly enhancing the utilization and affinity of chelating sites Adapted from
[9]. CC BY 4.0. (c¢) llustration of the pore partition synthetic strategy in imine-linked multivariate
COFs, showing the synthesis of multicomponent COFs with predesigned accessible aldehyde sites,
followed by the introduction of a symmetric building block as the pore partition agents to divide one
micropore/mesopore into two or three micropores Reprinted (adapted) with permission from [23].
Copyright (2024) American Chemical Society. (d) Enhancing the I, affinity of the porous organic
cage through post-synthetic modification. Adapted from [25]. CC BY 4.0.

with a high adsorption rate of up to ~4.46 g g~! for I3, offering valuable
insights for triiodide removal from wastewater. The pyridine-N sites and
interlayer hydrazine groups in the material form ‘multi-N nanotrap sites,” which
synergistically and effectively adsorb I, and CH3l. Subsequently, a post-synthetic
methylation reaction converts the neutral framework into a cationic one
(ACOF-1R), in which the pyridinium-N" sites exhibit high binding free energy
toward I3, enabling selective and rapid adsorption. In addition, the high porosity
of the material ensures efficient mass transfer of iodine species. Based on these
features, the material achieves efficient capture and separation of both gaseous
iodine species (I,/CH3I) and liquid-phase iodine (I3 ™). Precise control of the pore
size in frameworks enhances iodine capture and improves performance. Hao et al
[23] introduced a simple and general COF pore allocation strategy, successfully
applying the porous pore-partitioned COFs to I, and CHsl capture (figure 1(c)).
This strategy allows tailoring of the pore size of COFs to achieve pre-designed
pore sizes, components and functions. In breakthrough tests, COF 3-2P
dynamically adsorbed I, and CH3I more strongly than the non-partitioned parent
COF (COF 3), reaching impressive loadings of 1.01 and 0.60 g g~ ! at 75 °C,
respectively. Further, COF 3-2P exhibited high I, and CH3I uptake capacities of
0.42 and 0.24 g g~ ! at 150 °C, thus demonstrating excellent thermal stability.
This work is the first to report the use of symmetrical building blocks to achieve
spatial partitioning within COFs, thereby modifying the internal pore
environment and introducing a higher density of nitrogen-rich sites, specifically
triazine N-sites. Efficient iodine capture and speciation transformation (I, —
Is~/Is7) are realized through charge-transfer interactions involving the triazine

3
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N-sites. XPS and Raman spectroscopy confirm the electron transfer from nitrogen
atoms to I, while DFT calculations further identify the triazine N-sites as the key
active sites for the adsorption of both I, and CH;31. Wang et al [24] developed a
novel ferrocene—functionalized POP (FeTz-POP) for efficient capture of
radioactive iodine vapor from nuclear power plant emissions. The material
exhibited an outstanding iodine uptake of 396 wt% at 75 °C under ambient
pressure, which is 1.8 times higher than the ferrocene-free control (BpTz-POP).
This enhancement is attributed to the stronger interaction between the
cyclopentadienyl rings of ferrocene and iodine compared to benzene rings, the
electrostatic binding of Fe?* to polyiodide species (I ~/Is ™), and synergistic
contributions from N-rich heterocycles and 7-conjugated aromatic domains. This
study not only introduces a high-performance iodine adsorbent but also offers a
new strategy for functionalizing amorphous porous materials. The above studies
demonstrate that the combination of strategies such as molecular design, surface
functionalization, and fine-tuning of pore architectures are key research directions
that can enhance both iodine capture efficiency and material stability.

POCs have unique structures and properties, which make them promising
candidates for addressing iodine capture problems. Mao et al [25] proposed a
feasible and efficient three-step post-synthetic modification (PSM) strategy to
modify a representative POC (CC3). By integrating three iodine capture
strategies via a PSM to enhance I, affinity (figure 1(d)), the optimized POC
(OFT-RCC3%16Br ™) generates strong interactions between the Br~ anion and
I,/Is~. During the adsorption process, Is~ tends to dissociate into I3~ and I,
forming a more stable I,---Br™ interaction, which significantly promotes iodine
uptake. Additionally, the positively charged cage framework enhances the
electrostatic attraction toward I3 ~, resulting in an increase in binding energy by
more than 130%. These two factors synergistically contribute to the efficient
capture and transformation of multiple iodine species (I, I3, and Is ™). This
synergistic design significantly enhanced iodine vapor uptake, establishing the
modified POC as an ideal molecular container for I, capture. Laboratory studies
often differ from industrial environments, where complex systems, variable
conditions, and stringent economic and technical requirements pose greater
challenges to material performance. Liu et al [26] developed an effective platform
for the efficient capture of radioactive iodine using POCs under industrial
conditions (typically >150 °C, <150 ppmv I,) (figure 2(a)). Due to the highly
dispersed and accessible binding sites within the POC, along with sufficient space
to accommodate I, the constructed NKPOC-DT-(I7) exhibited a record-breaking
I, uptake capacity of 48.35 wt%. This performance surpasses the industrial
silver-based adsorbent Ag@MOR and benchmark materials TGDM and
4F-iCOF-TpBpy-I~ by factors of 3.5, 1.6, and 1.3, respectively, under identical
conditions. The material outperforms neutral Lewis base-dominated systems,
owing to the presence of ionic sites (NT-CH3I ™). These ionic sites preferentially
adsorb I, via strong Coulombic interactions, with a binding energy of —1.14 eV,
which is 2.5 times higher than that of the Lewis base site (N). This enhanced
interaction facilitates chemisorption of iodine and enables efficient capture even
under high-temperature conditions. This work provides new insights into
enhancing the adsorption capacity per unit ion-binding site, offering a promising
strategy for improving iodine capture efficiency. Wang et al [27] synthesized
porphyrin-based POCs (PTC-2 H and PTC-Zn) via dynamic covalent chemistry
for the efficient capture of radioactive iodine from nuclear power plants. PTC-2 H
exhibited an exceptionally high iodine uptake of 5.46 g ¢!, attributed to the
synergistic chemical adsorption provided by the large 7w-conjugated porphyrin
plane, the -NH groups within the N4 cavity, and imine linkages. Upon zinc
modification, the iodine uptake decreased to 4.96 g g~ ! due to the loss of -NH
groups. This study is the first to highlight the critical role of porphyrin -NH sites
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Figure 2. (a) The ‘highly dispersed’ and ‘readily accessible sites’ in POC can provide sufficient
accommodation space for adsorbing more I, molecules, thus effectively improving the adsorption
ability of unit ionic sites. [26] John Wiley & Sons. © 2024 Wiley-VCH GmbH. (b) Construction of
2D (Cu(pyz)TiF6)n layers with type 2 pyz ligands to form quasi-3D networks in SCU-20

(pyz = pyrazine) and schematic illustration of the highly accessible active sites and slide rail-like
1D channels of SCU-20. Adapted from [29], with permission from Springer Nature. (c) A
size-controllable nanosheet silicalite-1 zeolite, NSL-1, was designed for efficient and simultaneous
capture of iodine and methyl iodide from nuclear waste. Adapted from [20], copyright (2024), with
permission from Elsevier. (d) Flow chart of the synthetic steps for metal-modified BN aerogels.
Adapted from [21], copyright (2023), with permission from Elsevier.

in enhancing iodine adsorption performance. In order to solve the problems of
organic cage in actual use, it is difficult to fully utilize the active sites in solid
state and not easy to recycle in liquid state. Cheng et al [28] synthesized four 2D
COFs (Cage-TFB-COF, Cage-NTBA-COF, Cage-TFPB-COF, and Cage-
TFPT-COF) by condensing a nitrogen-rich organic cage with four three-tooth
linkers via Schiff-base polymerization. These COFs adopt AA stacking to form
crystalline porous solids with 1D hexagonal channels, enhancing the accessibility
of active sites in the solid state. Notably, Cage-NTBA-COF achieved an
exceptional iodine uptake of 304 wt%, 14 times higher than the pristine cage
solid. Spectroscopic analyses (FT-IR, XPS, and Raman) confirmed charge
transfer interactions between iodine and the imine (C=N) and aromatic
(C=C/C-H) moieties, leading to the formation of I~ and Is~ polyiodides. This
work demonstrates a tunable porous framework strategy for efficient iodine
capture and speciation in both liquid and vapor phases.

Methyl iodide is typically immobilized through a methylation reaction, with
most studies focusing on the use of post-modification strategies to introduce
high-affinity functional groups inside porous adsorbents. However, this process
carries the risk of blocking the material’s original pores, which may hinder the
uptake of methyl iodide leading to poor overall adsorption performance.
Therefore, an efficient CH3I adsorbent should possess flexible channels, allowing
optimal access of CHj3l to all active sites. Tai et al [29] developed a
two-dimensional intercalated layered framework material (SCU-20). This
material utilizes ‘rail-like’ pores and elastic interlayer contraction properties to
trap methyl iodide within the framework via its accessible high-density active
sites (figure 2(b)). The static adsorption capacity of SCU-20 for CH3l is
1.84 g ¢~ (RH = 18%), and its adsorption performance is almost unaffected by
high-dose radiation and environmental humidity. In SCU-20, CH3I physisorption
is primarily governed by exposed F sites, with strong electrostatic interactions of
F-CHj3 (—13.93 kcal mol~!) and F-I (—10.71 kcal mol~!), both significantly
stronger than those at N sites (—5.83 kcal mol~!). Chemisorption occurs via
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direct methylation of uncoordinated N atoms on the pyrazine rings. These two
modes act synergistically, together with the material’s unique interlayer groove
structure, to enable high-capacity CH3I capture. To address the weak
intermolecular interactions of CHs3I, the active sites of adsorbent materials can be
tailored to interact with the non-polar (--*CH3) and polar (---I) parts of CH3I,
maximizing its capture. Jie et al [15] reported a multi-micro POP (MHP-P5Q),
which is capable of fast adsorption of CH3I with a high adsorption capacity by
utilizing CH----7 interactions, halogen bonding (-I---N=C-) between imine
groups and CH3l, and chemisorption within the microporous framework triple
mechanism works together and combines a multi-level pore structure. Under
high-temperature conditions, enhancing the interaction between the adsorbent and
CHj;l is also crucial for effective capture. Pan et al [30] developed an adsorbent,
MFU-Cu(I), containing Cu(I) sites, which achieved a CH;3I uptake in excess of
0.14 g g~ at 0.01 bar and 150 °C, exceeding the properties of various baseline
adsorbents. Polar solvents could then efficiently remove CH3I adsorbed on Cu(I)
sites, restoring the adsorption capacity of MFU-Cu(]), realize the regeneration of
materials. MFU-Cu(I) efficiently captures CH3I through non-dissociative
chemisorption at coordinatively unsaturated Cu(I) sites, generated via formate
reduction, where the iodine end binds to Cu. EXAFS confirms the formation of
Cu-I bonds upon adsorption. Its reversible adsorption behavior and stability at
low CH3l concentrations highlight its potential as a functional material for
radioactive methyl iodide remediation. Gao et al [31] developed a novel MOF,
Ag-Tipe, for efficient capture of radioactive I, and CH3I from nuclear power plant
emissions. At 75 °C, the material achieved high uptake capacities of 3.31 g g~!
for I and 0.55 g g~ ! for CH;1. The open Ag™ sites enable direct coordination
with iodine species to form Agl, while densely distributed imidazole groups
enhance I, affinity via charge transfer and undergo methylation reactions with
CHs;l. Notably, Ag-Tipe exhibits excellent hydrophobicity, effectively resisting
water vapor interference, making it highly promising for practical applications.
These works demonstrate the importance of designing materials that can exploit
specific CHsI-adsorbent interactions.

Organic porous materials are invaluable in iodine capture due to their flexible
design, tunable pore sizes, and functionalization capabilities. Meanwhile,
inorganic porous materials have attracted significant attention in this field due to
their well-ordered pore structures, high specific surface areas, and diverse
chemical compositions. Zhao et al [20] developed a hydrophobic nanosheet
silicalite-1 (NSL-1) zeolite with tunable size for the efficient adsorption of I, and
CH3lI (figure 2(c)). By controlling particle size parameters to achieve an ultrathin
structure and enhanced porosity, NSL-1 exhibits outstanding adsorption capacity
and rapid kinetics, with an I, uptake of 553 mg g~! within 45 min and a CH;]
uptake of 262 mg g~! within 1 h. Impressively, its hydrophobicity, acid
resistance, and oxidation stability endow it with a higher iodine uptake capacity
than conventional aluminosilicate zeolites. NSL-1 preferentially captures I,
through a micropore confinement effect. XPS analysis indicates that I, and CH3l
are adsorbed in molecular (I 3ds/, at 620.7 eV) and methyl iodide (I 3ds/, at
619.9 eV) forms, respectively, with iodine species uniformly distributed
throughout the material. The physisorption-dominated mechanism retains its
selectivity even under complex gas environments containing HO and NO,,
making NSL-1 a highly stable adsorbent for radioactive iodine removal.
Additionally, the low cost and scalable synthesis of NSL-1 highlight its potential
applications in the nuclear industry. However, the physical adsorption mechanism
of inorganic porous materials may lead to a high iodine release rate, posing
potential environmental concerns that require further investigation and
optimization. Other research indicates that introducing metal active sites is
another effective strategy for enhancing iodine capture performance. Unlike
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purely physical adsorption mechanisms based on pore confinement effects, metal
active sites can significantly improve the selectivity and adsorption capacity of
materials for iodine through chemical bonding. Li et al [21] successfully
synthesized a metal-modified boron nitride (BN) aerogel iodine adsorbent via a
metal-induced, ultrasonic-assisted, and in-situ conversion method, thereby
enhancing its iodine adsorption capacity (figure 2(d)). The high specific surface
area and large pore volume of BN aerogels facilitate physical adsorption of I,
while the incorporation of Cu and Ag nanoparticles provides additional
chemisorption sites. DFT calculations confirm that metal doping significantly
enhances adsorption performance, attributed to the synergistic electron-donating
effect of electron-rich nitrogen in h-BN and the free electrons from the metal sites
in interacting with iodine species. Moreover, both ‘host—guest’ (adsorption
site-I>) and ‘guest—guest’ (I—I,) interactions coexist during the adsorption
process, with metal sites primarily facilitating the initial adsorption stage by
strengthening the host-guest interaction. As a result, BN-Cu and BN-Ag aerogels
exhibit extraordinarily high iodine uptake capacities of 1739.8 wt.% and
2234.13 wt.%, respectively. Based on the unique advantages of BN materials, Li
et al [32] developed a three-dimensional BN foam for the capture and reversible
storage of iodine in both gaseous and liquid phases. This novel material,
composed of porous BN microfibers, exhibits a high porosity and a large specific
surface area of up to 561.92 m? g~!. The unique interwoven fibrous structure
provides abundant 7-conjugated domains and functional adsorption sites,
enabling excellent iodine uptake with a maximum adsorption capacity of

212 wt% for gaseous iodine. In addition, the material retains the high thermal
stability and chemical inertness characteristic of h-BN, allowing regeneration at
800 °C under a nitrogen atmosphere. Its monolithic foam structure offers
practical advantages over conventional powdered adsorbents for applications in
nuclear industry environments. These results highlight the great potential of BN
foam for iodine adsorption and storage. However, in practical applications, this
strategy may face challenges due to the uneven distribution of active sites on the
material surface or the incomplete utilization of certain sites during interactions
with iodine molecules. Consequently, further optimization is required to fully
exploit their adsorption capacity for iodine.

To summarize, MOFs, COFs, POCs, and inorganic porous materials exhibit
strong adsorption capabilities for iodine due to their tunable pore structures and
high surface areas. Despite their remarkable iodine uptake capacities, many
porous organic adsorbents have limited thermal stability which restricts their
practical application in high-temperature environments. Furthermore, the
presence of acidic water vapor in iodine-laden emissions from the nuclear
industry poses additional challenges, as organic adsorbents generally lack
chemical inertness and hydrophobicity, making them susceptible to degradation
under such conditions. Additionally, most iodine adsorbents are synthesized in
powder form, which complicates their collection and increases the risk of
secondary environmental contamination due to particle dispersion. Therefore,
developing highly efficient and stable solid-state iodine adsorbents with enhanced
durability and processability remains a critical challenge for practical
applications.

3. Perspective

Although substantial progress has been made in the design, development and
performance optimization of porous materials for iodine capture, challenges such
as the long-term stability of the materials and scalability for practical applications
remain. Solid materials, cutting-edge technologies, intelligent computing, and
interdisciplinary collaboration can drive advancements in iodine capture.
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Specifically: (i) material design—hybrid materials combining polymers and
nanoparticles offer high adsorption capacity, chemical versatility, and durability,
making them suitable for both gaseous and aqueous iodine containment. For
gaseous iodine control, flexible polymer—nanoparticle composites can be
integrated into filtration systems. In aqueous systems, a careful balance of
hydrophilicity and hydrophobicity is crucial. Future research should focus on
surface chemistry modifications of nanoparticles to selectively bind iodine even in
the presence of competing ions and organic matter. Also, layered double
hydroxides with anion-exchange capabilities can be modified to capture iodine
species from radioactive waste streams. Their structural versatility allows the
incorporation of iodine into their interlayer spaces, forming stable complexes that
minimize iodine mobility; (ii) at the technical level, electrochemical and
photocatalytic technologies offer new approaches for iodine capture.
Electrochemical techniques using redox-active electrodes can selectively capture
and separate iodine species in complex aqueous or gaseous environments. By
tuning the electrode potential, these systems can efficiently extract iodine without
the need for chemical reagents, reducing secondary waste generation. Advanced
photocatalysts, such as heterostructured semiconductors, can utilize sunlight or
artificial light to oxidize iodide (I") into less mobile iodate (I03") or reduce
volatile molecular iodine (I,) into stable iodide species. This process stabilizes
iodine and provides a sustainable, energy-efficient approach to iodine
management; (iii) leveraging machine learning and high-throughput
computational simulations, researchers can design next-generation materials with
optimized properties for iodine capture and containment. Computational tools
enable the prediction of adsorption capacities, material stability, and interaction
mechanisms, accelerating the development cycle for novel solutions; (iv) the
integration of multiple disciplines, including physics, chemistry, and biology,
should enable the development of more precise and efficient iodine capture
systems. For instance, combining microfluidic technology with advanced
adsorbents can achieve high-efficiency iodine enrichment and rapid separation. In
summary, the integration of advanced materials, cutting-edge technologies, and
algorithm-driven approaches, coupled with interdisciplinary collaboration, holds
the potential to establish comprehensive solutions encompassing detection,
separation, and immobilization. This will provide a robust foundation for the
long-term safe management of radioactive iodine while driving radionuclide
remediation technologies toward greater efficiency, sustainability, and
intelligence.
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