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A B S T R A C T

Porphyrins and metalloporphyrins have been exploited for a wide range of applications including sensing and 
catalysis in both homogeneous and heterogeneous formats. An emerging class of porous materials that utilize 
porphyrins and metalloporphyrins for diverse applications are the metal organic frameworks (MOFs) containing 
porphyrins as guests within the MOF cavities or as integral components of the framework by serving as a metal 
node linker. Here, a novel metal metalloporphyrin framework (MMPF-X) was synthesized using a solvothermal 
method from a 4′,4″‘,4″“‘,4″““‘-(porphyrin-5,10,15,20-tetrayl)tetrakis(([1″“,1″“‘-biphenyl]-3,5-dicarboxylic acid)) 
(TDBP) ligand and zinc paddlewheel metal building blocks (MBBs), yielding C 2/m space group crystals with a 
cph pattern of crisscross metalloporphyrin lattices that result in complex interconnected channels. The MMPF-X 
functions as a heterogeneous sensor for nitroaromatics, exhibiting reversible fluorescence quenching in the 
presence of nitrobenzene. The level of detection (LOD) was determined and compared to ZnTDBP in solution, 
highlighting MMPF-x’s potential for quantitative sensing of nitrobenzene and related compounds across a wide 
concentration range. The quenching mechanism was evaluated using a modified stern-Volmer analysis for 
fractional components consistent with the porosity of the MOF.

1. Introduction

Porphyrins and metalloporphyrins exhibit diverse electronic prop
erties leading to applications in optical based sensing, catalysis, and 
light harvesting [1,2]. With regards to chemical sensing, porphyrins 
have been utilized in a wide array of technologies including, but not 
limited to, functionalized polymers, thin films, porous materials, gra
phenes, and nanoparticles [3–6]. Although many porphyrinic chemical 
sensors are electrochemically based, their optical characteristics provide 
higher sensitivity [7,8].

Metal-organic frameworks (MOFs) are a class of materials that are 

important platforms for the incorporation of porphyrin-based sensor 
elements [9–12]. MOFs are composed of metal ion complexes known as 
metallo-building blocks (MBBs) that are linked together through organic 
ligands to form 2D and 3D porous framework structures. MOFs provide 
several advantages for small molecule sensing applications, including 
high surface area, tunable pore size, and chemical and thermal stability. 
The porosity of MOFs allows for small molecules to enter the pores and 
interact with the metal ions or organic linkers, which can result in 
changes in the electronic, optical, and/or magnetic properties of the 
MOF. Porphyrin metal-organic frameworks (PMOFs) are a subclass of 
MOFs that have demonstrated potential for sensing applications 
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[12–15]. PMOFs are constructed using porphyrins and metal
loporphyrins as linkers between the framework MBBs [16–18]. Various 
PMOFs have displayed effective sensing of a wide range of small mole
cules, including nitroaromatics [19–21]. The sensing mechanism typi
cally involves the interaction of the molecules with the porphyrin 
ligands in the MOF, which results in changes in the electronic and/or 
optical properties of the material.

One subclass of PMOFs are the MMPFs utilizing various octatopic 
and tetratopic porphyrin ligands that form a diverse array of MOF to
pologies [22–26]. The MMPFs containing open shell metals such as Co 
(II) or Pd(II) have been shown to be effective catalysts for numerous 
process including epoxidation reactions [24]. A particularly interesting 
material is MMPF-10 which contains a tetrakis-3,5-bis[(4-carboxy) 
phenyl]phenyl porphine (TBCPPP) ligand and Cu(II) within the 
porphyrin core. MMPF-10 catalyzes a reaction between CO2 with azir
idines to synthesize oxazolidinones [24,25]. The MMPF-9 MOF contains 
another octatopic ligand tetrakis(3,5-dicarboxybiphenyl)porphine 
which, in the presence of Cu(II) generates Cu2(CO2)4 paddlewheel 
nodes with excellent performance as a heterogeneous Lewis-acid cata
lyst for chemical fixation of CO2 to form carbonates at room temperature 
under 1 atm pressure [24,25].

In order to expand the functional versatility of the MMPFs, MMPF-X 
was prepared using the TDBP as a linker which forms paddle wheel 
nodes containing Zn(II) ions (Fig. 1). The emissive properties of MMPF-X 
present an opportunity for the development of both light-on and light-off 
sensors for a variety of analytes. The ability of MMPF-X to detect the 
model nitroaromatic compound nitrobenzene (NB) using a light-off 
mechanism has been explored using a modified Stern-Volmer mecha
nism [12].

2. Experimental

All reagents were purchased from Sigma-Aldrich, Fischer Scientific, 
and TCI America, and used without further purification unless otherwise 
noted.

Synthesis of TDBP and MMPF-X: TDBP was prepared using methods 
described in the SI. MMPF-X was prepared by a solvothermal method as 
follows: 4 mg of TDBP and 12 mg of Zn(NO3)2⋅6H2O were added to 2 mL 
of DMSO in a 5-dram threaded cap glass vial and sonicated for ten mi
nutes. The resulting solution was heated in a gravity oven at 135 ◦C for 
72 h. The resulting red crystals were washed several times with DMSO 
and then soaked in MeOH for 24 h before being washed again with 
MeOH. Crystals were crushed in a mortar and pestle and then sonicated 
briefly in MeOH prior to use in all spectroscopy experiments.

Optical Absorption Spectroscopy: UV/Vis spectra were obtained from 
~0.7 mg of a powdered MMPF-X suspension in 2 mL of methanol added 
to a 1-cm quartz optical cuvette, accompanied by stirring. Spectra were 
obtained on a Shimadzu UV2400 Spectrometer.

Steady-state Emission Spectroscopy: Steady state emission spectra were 

obtained using the same samples as for the UV/Vis spectroscopy. 
Emission spectra were obtained with an ISS PC1 single photon counting 
emission spectrometer with Soret excitation (426 nm for the TDBP and 
430 nm for the MMPF-X).

Emission Lifetime Measurements: Samples were prepared as above and 
singlet lifetimes were determined using an ISS ChronosBH equipped 
with a Becker, Hinkl 473 nm pulsed laser diode operating at 20 MHz 
(~50 ps FWHM, ~0.6 mW), with a polarizer at the magic angle, and a 
530 nm long-pass filter. A didodecyldimethylammonium bromide 
(DDAB) solution in H2O was used as a reference to obtain the instrument 
response function. Data were fit using ISS Vinci software.

Reusability: Samples were prepared in the manner described above 
and kept under argon. Baseline fluorescence spectra were collected in 
the absence of NB, and subsequent spectra were obtained following the 
addition of 20 uL of neat NB immediately after the addition. The NB- 
containing MOF suspension was then centrifugated and decanted 
once, and argon-sparged MeOH was added to restore the original vol
ume. This suspension was mixed thoroughly before being returned to the 
cuvette. The atmospheric headspace was replaced with argon and the 
sample was allowed to stir for 5 and 10 min before spectra was collected. 
This process was repeated once more before the quenched fluorescence 
intensity/lifetimes were returned to base line levels.

Single-Crystal X-Ray Crystallography: Single Crystals of MMPF-X and 
MMPF-Y were isolated directly from the supernatant solution and 
diffraction data were collected on a Bruker D8 VENTURE Single Crystal 
Diffractometer. The X-ray diffraction data for both crystals were 
collected using synchrotron radiation (λ = 0.41328 Å) at Advanced 
Photon Source, Beamline 15-ID-B of ChemMatCARS in Argonne Na
tional Lab, Argonne, IL Indexing was performed using APEX326. Data 
integration and reduction was performed using SaintPlus [27]. Ab
sorption correction was performed by a multi-scan method implemented 
in SADABS [28]. Space groups were determined using XPREP imple
mented in APEX3. Structures were solved using SHELXT [29] and 
refined using SHELXL-2019 (full-matrix least-squares on F2) through 
Olex2 [30].

3. Results and discussion

3.1. Structural Characterization of MMPF-X

The MMPF-X framework is disordered about symmetry positions and 
was refined using restraints. Due to the disorder, the assignment and the 
exact number of solvent molecules is tentative. The framework appears 
to be negatively charged, but it was not possible to identify the coun
terions. The contribution of heavily disordered content in the structural 
voids was treated as diffuse using the Squeeze procedure implemented 
in the Platon program [31]. Crystal data and refinement conditions are 
listed in Tables S1 and S2 in the SI. The crystals diffracted only up to ca. 
1.3 Å resolution. Disordered ligands were modeled with restraints. Due 

Fig. 1. Schematic illustration of TDBP + Zn paddlewheel combined to produce MMPF-X.
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to the high symmetry and disorder, it was not possible to locate anions or 
solvent molecules.

The MMPF-X structure consists of infinite ribbons made of Zn / 
carboxylate clusters (Fig. 1 and Fig. 2) bridged by two types of crystal
lographically independent and tetragonally shaped porphyrin ligands. 
The resulting 3-D framework contains structural channels along the 
crystallographic [001]/c direction filled with heavily disordered content 
and providing access to the porphyrin active sides in the crystal. The 
total available free space after removal of solvent molecules is approx
imately 75 %.

3.2. Spectroscopic Characterization of Zn TDBP and MMPF-X

The absorption and emission spectra of the parent Zn TDBP ligand 
are displayed in Fig. 3, left panel. The absorption spectrum of the 
ZnTDBP in methanol is dominated by a Soret band (B(0,0)) centered at 
426 nm that originates from the porphyrin π to π* transition and 
attributed to mixtures of a1u - > eg and a2u - > eg orbital excitations in 
Gouternman’s classical four orbital model [32]. The corresponding 
visible bands are attributed to the Q(0,0) (557 nm) and Q(0,1) (600 nm) 
transitions. The absorption bands of the Zn TDBP are bathochromically 
shifted by ~6 nm from the parent Zn(II) tetraphenyl porphyrin (ZnTPP) 
(B(0,0) ~420 nm, Q(0,0) ~550 nm and Q(0,1) ~594 nm) indicating the 
extension of the peripheral phenyl groups couple to the porphyrin ring. 
The ZnTDBP emission spectrum exhibits two bands corresponding to 
decay of the Q(0,0) and Q(0,1) excited states (S1 state) (605 nm and 655 
nm, respectively). The emission maxima are independent of the excita
tion wavelength, again, consistent with emission arising from decay of 
the S1 state.

The absorption spectrum of the MMPF-X framework suspension in 
methanol displays a Soret band at 430 nm and Q-bands at 552 nm and 
610 nm. The corresponding emission bands are observed at 623 nm and 
664 nm (also independent of excitation wavelength). The fact that the 
absorption bands of the MMPF-X and ZnTDBP are similar indicates that 
there are no significant structural perturbations associated with incor
poration of the macrocycle into the framework that affect the energy of 
the excited S2 state. However, the longer wavelengths associated with 
the emission bands of the MMPF-X indicated perturbations that lower 
the energy of the emitting S1 state and a relative increase in decay to a 
vibrational mode of the ground state.

3.3. Emission Quenching of ZnTDBP by Nitrobenzene

The quenching of the ZnTDBP by NB is displayed in Fig. 4. Both the Q 
(0,0) and Q(0,1) bands decrease in intensity upon addition of NB (Fig. 4, 
left panel) with a corresponding decrease in lifetime (Fig. 4, right panel). 
An overlay of the Stern-Volmer plots derived from the emission lifetimes 
and emission intensities are displayed in Fig. 5.

The (I0/I) Stern-Volmer (SV) plot for the ZnTDBP quenching is linear 
and characteristic of a diffusional quenching process that can be 

described by the classic Stern-Volmer equation: 

I0
I
= 1+kqτo[Q] (1) 

where I0 is the fluorescence intensity in the absence of quencher, I is the 
fluorescence intensity at various [Q], kq is the quenching rate constant 
(M− 1 s− 1), and τ0 is the fluorophore lifetime in the absence of quencher 
(6.1 ns for ZnTDBP, Fig. 5, left panel) [33]. From the SV analysis, 
ZnTDBP exhibits a dynamic quenching mechanism with a kq = 5 × 109 

M− 1 s− 1. The kq value is similar to other Zn(II) porphyrins including Zn 
(II) tetrasulphonatophenyl porphyrin (ZnTPPS) (kq = 4 × 1010 M− 1 s− 1) 
[34–36]. The quenching mechanism involves photo-induced electron 
transfer between the excited state porphyrin and NB within a solvent 
excluded contact pair according to:

ZnP* + NB - > [ZnP+:NB− ] - > ZnP + NB Scheme 1 [37].

3.4. MMPF-X NB emission quenching

The corresponding steady state emission quenching of the MMPF-X 
MOF in the presence of NB is non-linear with two concentration 
ranges (Fig. 5, right panel). The non-linear SV plot can be attributed to 
more than one type of quenching interaction between NB and fluo
rophore consistent with the porous structure of the MOF [38]. Emission 
quenching associated with several photo-active MOFs has been shown to 
be diffusion controlled, with diffusion rates dependent on guest size with 
respect to MOF channel and pore sizes [39–41]. In contrast, the τ0/τ plot 
is indicative of a pure static mechanism (τ0 is 1.3 ns for MMPF-X).

The SV data can be best interpreted using an SV equation that is 
modified to account for fractional contribution of multiple components, 
in which the populations have different accessibility to the quencher: 

I0
I
=

∑n

i=1

f i(
1 + kqiτ0[Q]

) (2) 

where fi is the fraction of fluorophores with associated quenching 
rate constant kqi [38]. Fitting the steady state SV data to Eq. 2 results in 
two fractional populations of accessible quenching sites, one that is 
static in character with f1 = 0.47 ± 0.02 and kSV1 = 0, and a second that 
is dynamic in character with f2 = 0.53 ± 0.02, and a kSV2 = 10.9 × 104 

M− 1. The fraction of accessible sites making up 53 % of the total pop
ulation are proposed to be ZnTDBP sites located on the surface of the 
crystal that are quenched through diffusional interactions with the so
lution NB. The corresponding fraction accounting for the remaining 47 
% of the sites are proposed to be interior framework ZnTDBP ligands 
that are quenched by NB molecules that populate the interior cavities of 
the MOF.

Fig. 6 illustrates the quenching model for the MMPF-X. The popu
lation of chromophores giving rise to the diffusional quenching are 
primarily surface accessible sites. Upon addition of NB to MMPF-X, NB 
molecules colliding with the crystal surface porphyrins give rise to the 
diffusional quenching process while NB that encounter an aperture enter 
the MOF cavities and statically quench interior porphyrins associated 
with the framework cavities. As the concentration of NB increases the 
population of NB occupied cavities resulting in increased static 
quenching.

3.5. Diffusional quenching efficiency

The Stokes-Einstein (SE) relation describes an approximation of the 
rate at which diffusion-limited bimolecular collisions can occur in a 
solution of known viscosity, kd. 

kd =
8RT
3η (3) 

where R is the gas constant, T is temperature, and η is the viscosity of 
the medium [38]. In MeOH at standard temperature and pressure, kd =

Fig. 2. Crystal structure of MMPF-X. Atom by colour: Gray (carbon), red (ox
ygen), lavender (nitrogen), and light blue (zinc). Hydrogen not displayed for 
clarity. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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1.24 × 1010 M− 1 s− 1, which can be compared to the ligand and MOF 
quenching constants to estimate the efficiency of diffusional quenching 
(bimolecular collision of NB with fluorophore) relative to an ideal so
lution. When compared as a percentage (kqi*kd

− 1*100 %), the quenching 
rate for the diffusional component of MMPF-X (69 %) is nearly the same 
as ZnTDBP in solution (65 %) at the same total concentration of 
fluorophore.

This comparison indicates there is little difference between the 
availability of homogeneous ZnTDBP and the surface accessible ZnTDBP 

in the heterogeneous MMPF-X suspension. This also highlights the in
efficiency inherent to homogeneous porphyrins, which are known to 
form deactivated stacking dimers and oligomers [21].

3.6. Recycling and sensitivity

The sensitivity of MMPF-X towards the quantitative detection of NB 
was determined by the limit of detection (LOD) for both the MOF and the 
metalloporphyrin in solution. The LODs were obtained using Stern- 

Fig. 3. Normalized UV–Vis absorbance and fluorescence emission spectra for ZnTDBP (left) and MMPF-X (right) in methanol.

Fig. 4. a, b. Change in fluorescence emission intensity and lifetime of ZnTDBP upon the addition of NB. c, d. Change in fluorescence emission intensity and lifetime of 
MMPF-X upon the addition of NB.
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Volmer analysis. ZnTDBP exhibits a LOD of 1.5 mM, while MMPF-X 
exhibits LOD of 2.6 mM. While ZnTDBP has overall lower thresholds 
of detection for quantitative measurement, MMPF-X is sensitized to
wards a significantly broader range of concentrations of NB, with a 
relatively smaller increase in its detection limitations. Relative to other 
heterogeneous materials MMPF-X performs similarly in the detection of 
NB (Table 1).

4. Conclusion

The ability to recycle MMPF-X as a nitro sensor is augmented by the 
facile separation inherent in heterogeneous materials. Fig. 7 demon
strates that the initial fluorescence intensity of MMPF-X can be regen
erated by filtering the powdered solid and washing with MeOH several 
times; NB is easily removed from the MOF, indicating reversible 

Fig. 5. Plot of I0/I and τ0/τ associated with Zn TDBP (left) and MMPF-X (right) upon the addition of NB.

Fig. 6. Illustration of nitrobenzene quenching by MMPF-X. The yellow high
lighted area and blue arrows represent the MOF interior and quenching by NB 
within, as well as NB diffusion between pores, accounting for component f2. The 
green arrow represents collisional quenching at the exterior, where bulk solu
tion is highlighted light green. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

Table 1 
Comparison of KSV values of several MOF-based nitroaromatic sensors. These materials all utilize fluorescence emission quenching for detection. Acronyms: NP 
(nitrophenol), NA (nitroaniline).

Material Sensor Analyte Ksv (M¡1) Solvent Refs.

[Pb1.5(DBPT)]2⋅(DMA)3(H2O)4 DBPT NB 1.4 × 104 Water [40]
FJI-C8 H6TDPAT 2,4-DNP 5.1 × 104 DMF [41]
ZSTU-2 H3BTB Picric Acid 2.3 × 104 EtOH [42]
– – NB 1.4 × 104 –
HNU-34 H4TCPE TNP 3.1 × 104 DMF [43]
– – 3-NP 86 –
[Cd(L)•H2O]n [Cd(L)•H2O]n TNP 1.6 × 104 Water [44]
– – 4-NP 5.2 × 103 –
[Cd3(DBPT)2(H2O)4]⋅5H2O H3DBPT TNP 2.8 × 104 MeOH [45]
– – 4-NA 2.5 × 104 –
CdHTBA NTBA NB 0.3 × 104 EtOH [46]
Zn2 -(NDC)2 (bpy)⋅Gx Zn-NDC NB 4.6 × 104 EtOH [47]
MMPF-X Zn TDBP NB 1.1 × 104 MeOH this work
ZnTDBP Zn TDBP NB 2.9 × 104 MeOH this work

Fig. 7. Normalized emission spectra of MMPF-X illustrating regeneration of 
emission intensity after addition and subsequent washing with methanol. Solid 
and patterned bars represent fluorescence emission maxima at 623 and 664 nm, 
respectively.
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interaction between MMPF-X and NB. The application of novel MMPF-X 
as a reusable, heterogeneous optical sensor of model compound nitro
benzene, functioning across a wide concentration range, makes it suit
able for applications that require facile and rapid detection. Future work 
in the application of this system would benefit from selectivity studies, 
such as the detection of NB against concomitants such as those speciated 
in real-world samples or functionally similar chemicals.
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