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Advance X-Ray Diffraction
Class Website:

https://sites.chemistry.unt.edu/~tgolden/courses/course

_downloadsFall24.xhtml

Readings:

Given at the end of each powerpoint lecture. The books are on reserve 

at the Willis library under CHEM 5390 (X-ray Diffraction).

Homework Assignments:

Given at the end of each powerpoint lecture. I do not accept 

assignments by email – all assignments must be turned in during class.

Exams:

There will be an exam in class on Tuesday, December 10th, 

8:00 - 10:00 a.m.
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Important for Calculations

where n is an integer

 is the wavelength of the x-rays

d is the interplanar spacing in the specimen

 is the diffraction angle

Bragg Equation

 sin2dn =
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Properties of X-rays

The Copper K Spectrum
⚫ The diagram at 

left shows the 5 

possible Cu K 

transitions

⚫ L to K “jumps: 

– K1 (8.045 keV, 

1.5406Å)  

– K2 (8.025 keV, 

1.5444Å)

⚫ M to K

– K1 K3 (8.903 

keV, 1.3922Å)

– K 5



Crystallography 

Solids can be generally classified as: 
single crystal, polycrystalline, or 
amorphous.

Crystal - solid composed of atoms arranged in a 

pattern periodic in three dimensions.

Point lattice - an array of points in space so 

arranged that each point has identical 

surroundings.

Since all points are identical we can choose a 

repeating group to represent a unit cell.



Crystallography 

The size and shape of the unit cell can be described by 
three vectors, a, b, and c (called the crystallographic 
axes of the cell).

The unit cell can also be described in terms of lengths 
(a, b, c) and the angles between them (, , g).

The lengths and angles are the lattice constants or 
lattice parameters of the unit cell.

Notice that the entire point lattice can be built by 
translating the unit cell.



A Unit Cell.

Axis a b c

Lattice Parameters:

Lengths a b c

Inter-axial   g

angle



7 Crystal systems and 14 Bravais lattices.



The fourteen Bravais lattices.



Crystallography 

Geometry and the structure of crystals

Vectors and Planes
Direction or vectors are denoted by [uvw]

[     ]  - denotes an individual direction. 

a

b

c



Crystallography 

Start at A (0,0,0) origin and travel in a vector until you reach B.

So the direction of the line is [1 0 0]

The family of directions is denoted by <     >

<1 0 0>  - is the family of directions for all the individual directions.



Crystallography 

Geometry and the structure of crystals

D. Vectors and Planes

cos  = (uu' + vv' + ww')/(u2 + v2 + w2)1/2(u'2 + v'2+ w'2)1/2

Example: What is the angle between [110] and [111]?

 = arc cos (1x1 + 1x1 + 0x1)/ (12 + 12 + 02)1/2(12 +12 + 12)1/2

= 35.3o

Chem 5570



Indices of Directions



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Miller Indices

A notation used to describe various planes within a 
crystal lattice.

Steps to determine Miller Indices

1) Identify the points at which the plane intersects the a, b, c 
axes. Intercept is measured in terms of fractions or multiples of 
the lattice parameter.

2) Take reciprocals of the intercepts. (Get rid of infinity)

3) Multiply to get a whole number (Clear the fractions)

4) Enclose numbers in (   ). Represent negative numbers with a 
bar (bar one).



Practice:

Plane A:

a b c

Step 1. Intercepts 1 1 1

Step 2. Reciprocals 1 1 1

Step 3. Clear fractions 1 1 1

Step 4. Miller Indice (1 1 1)
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Practice:

Plane B:

a b c

Step 1. Intercepts 1 2 ∞

Step 2. Reciprocals 1 1/2 0

Step 3. Clear fractions 2 1 0

Step 4. Miller Indice (2 1 0)



Example: Cubic System

a b c

Step 1. Intercepts 1 ∞ ∞

Step 2. Reciprocals 1 0 0

Step 3. Clear fractions 1 0 0

Step 4. Miller Indice (1 0 0)

This is the surface plane of the cubic crystal.



Example: Cubic System

a b c

Step 1. Intercepts 1 1 ∞

Step 2. Reciprocals 1 1 0

Step 3. Clear fractions 1 1 0

Step 4. Miller Indice (1 1 0)



Example: Cubic System

a b v

Step 1. Intercepts 1 1 1

Step 2. Reciprocals 1 1 1

Step 3. Clear fractions 1 1 1

Step 4. Miller Indice (1 1 1)



Example: Cubic System

a b c

Step 1. Intercepts 1/2 ∞ ∞

Step 2. Reciprocals 2 0 0

Step 3. Clear fractions 2 0 0

Step 4. Miller Indice (2 0 0)

Notice that the (2 0 0) reflection is a multiple of (1 0 0).



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

In the cubic system there are six faces 
equivalent to (1 0 0).

This set is related and denoted by {1 0 0} -
this set is called a family of planes.

{     }  - denotes a family of planes        

(     )  - denotes an individual plane

The six planes in the {1 0 0} family are:

(1 0 0)   (0 1 0)   (0 0 1)   (1 0 0)   (0 1 0)   (0 0 1)

11



Crystallography 

Geometry and the structure of crystals

Vectors and Planes
The number of planes in a family that have the same 

spacing is called the multiplicity factor. (This factor 

determines the intensity of the reflection).

Notice the (2 0 0) plane is not in the same family as 

the (1 0 0) plane. It is parallel to the (1 0 0) plane but 

the spacing is 1/2 the spacing for the (1 0 0) plane.
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Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Shapes

Crystals often have facets which correspond 
to low index planes.

For instance, crystals with cubic symmetry 

(4 – 3 fold axis) can have the form of an 
octahedron or cube.

Since different faces have different 
arrangement of atoms, then the different 
faces will have different reactivities.



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Example:

If you crystallize NaCl with H2O you get a cubic 

shaped crystal.

If you crystallize NaCl with urea you get an 

octahedron shape crystal.

Why? – urea acts to inhibit the growth of the {111} 

faces, so the {100} faces grow faster and grow out.

A general rule: the surfaces that are most prominent 

in a crystal are those that grow most slowly.



Crystallography 

Geometry and the structure of crystals
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Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Shapes

As seen in the previous example, the overall crystal 

may have the same or different shape than it’s unit 

cell.

Planes of low indices have the largest density of 

lattice points and the law of crystal growth states 

such planes develop at the expense of planes with 

high indices and few lattice points.



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Shapes

Law of rational indices – states that the indices of 
naturally developed crystal faces are always 
composed of whole numbers, and rarely exceed 3 or 
4.

Example: Faces of form {100}, {111}, {210}, etc are 
observed but not faces as {510}, {719}, etc. 

An exception is seen in materials work for some 
electrodeposits or other artificially grown deposits 
resulting in a grains in a polycrystalline mass.



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Shapes

Also when considering surfaces, one rule of thumb,  
is that the most stable solid surfaces are those with: 

1. a high surface atom density 

2. surface atoms of high coordination number 

(Note - the two factors are obviously not independent, but are 
inevitably strongly correlated). 

Consequently, for example, if we consider the 
individual surface planes of an fcc metal, then we 
would expect the stability to decrease in the order 

fcc (111) > fcc (100) > fcc (110)



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Defects

Imperfections in the periodic structure of the 

individual grains of crystalline solids.

Classified as point, line, and planar defects. 

Can have large effect on the properties of the 

material (mechanical, optical, electrical, etc).



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Defects

Linear defects – edge and screw dislocations. Large 
strains and very high dislocation densities can occur 
when metals are forged, rolled, machines, shot 
peening, or ball milling.
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Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Defects
Linear defects – edge dislocations.



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Defects
Linear defects – screw dislocations.



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Defects

Planar defects – stacking faults and twins

Stacking faults – the normal stacking sequence of 

the close packed planes can be disrupted.

Example: For the fcc structure, the normal stacking 

sequence is ….ABCABCABC… but can become 

…ABCAB*ABC… or …ABCA*CABCA…



Crystallography 

Geometry and the structure of crystals

Vectors and Planes

Crystal Defects

Twinned crystals – may be described by the 

symmetry operation to bring one in coincidence with 

the other.

One kind involves a 180o rotation about an axis 

called the twin axis, the other involves a reflection 

across a plane called the twin plane.

The plane where the two parts of the twinned crystal 

unite is called the composition plane.



Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals
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Crystallography 

Geometry and the structure of crystals



Crystallography 

Geometry and the structure of crystals

Interplanar Spacings

The distance between an equivalent set of planes is 

defined as dhkl - the interplanar spacing. 

The interplanar spacing, dhkl, measured at right 

angles to the planes, is a function both of the plane 

indices (hkl) and the lattice constants (a,b,c,,,g).

The distance can be directly determined by x-ray 

diffraction.



The dhkl interplanar spacing.

For a cubic system:
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The dhkl interplanar spacing.



Crystallography 

Geometry and the structure of crystals

Interplanar Spacings
For an orthorhombic system:

1/d2 = h2/a2 + k2/b2 + l2/c2

Example: Calculate the d-spacings for an orthorhombic 
cell for a = 3Å, b = 4 Å, and c = 5Å if the reflections 
are 001, 010, 100, 011 and 101?

001 5

010 4

100 3

011 3.12

101 2.57



Crystallography 

Geometry and the structure of crystals

Interplanar Spacings

Planes of large spacings have low indices and pass 

through a high density of lattice points.



Crystallography 

Geometry and the structure of crystals

Interplanar Spacings

Planar density is the density of atoms on a particular 

plane, and can be determined by:

planar density = number of atoms on the plane/ area of the plane
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Crystallography 

Geometry and the structure of crystals

Interplanar Spacings

Density = mass/volume

= formula weight/molar volume

= FW/(volume of unit cell)N

= (FW  x  Z) / (V  x  N)

Z = # of formula units per unit cell



Diffraction Theory  

Scattering from an array of atoms is shown here, with the incident 

beam represented as 1, 2, and 3 and the diffracted beam as 1’, 

2’, and 3’.
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Diffraction Theory  

n = path difference (d) (where n is a whole number)

d = DE + EC' = 2EC‘ = CEsin + CEsin d = 2CEsin

Since CE equals interplanar spacing, d, then

n = 2dsin Bragg's Law (see next 4 slides for derivatization)



Diffraction Theory  

Derivation of Bragg's law:
For planes of atoms X, Y, and Z to have a diffracted beam, the x-rays at 
bb' must all be exactly in phase. Rays 2 and 3 must travel further than 
ray 1 to reach bb'. If rays 1', 2', and 3' are to arrive at bb' in phase with 
one another, then 2' and 3' must have path length exactly a whole 
integer wavelength longer than ray 1'.



Diffraction Theory  

How can we prove this?

Ray 2 -2' must travel the additional distance of CB + BD. 

This distance (CB + BD) must equal some whole number of wavelengths. 

Notice the two triangles CBA and DBA have a common side, AB, that is also 
the spacing d between rows of atoms.



Diffraction Theory  

Also notice that the angle CAB equals , since CA is 
perpendicular to ray 1 and AB is perpendicular to row X. Since 
row X and ray 1 make the angle , and CAB represents a 900

rotation of this angle, the two angles are equal.



Diffraction Theory  

So, sin = CB/AB and sin' = BD/AB so,

ABsin = CB and ABsin' = BD

Since  = ', 2ABsin = CB + BD d = AB

2dsin = CB + BD n = CB + BD

2dsin = n Bragg's Law



Diffraction Theory  

Diffraction

Bragg’s Law refers to the direction of 

diffraction but does not give the intensity of 

the diffracted beam.

In fact, Bragg’s Law can be satisfied but the 

intensity may be very low or even zero.
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Diffraction Theory  

Diffraction

Factors that affect the Intensity of the 

diffracted beam:

1) Structure factor

2) Polarization factor

3) Lorentz factor

4) Multiplicities

5) Temperature factor

6) Absorption factor - absorption of x-rays by the sample

7) Preferred orientation

8) Extinction coefficient - applies to single crystals - not 
applicable to powders



Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity

Structure factor, F - describes the effect of 

crystal structure on the intensity of the 

diffracted beam. 
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Diffraction Theory  

Example

Structure, Scattering, and Intensity

If we diffract from the (001) plane of each structure, then,



Diffraction Theory  

Example
Structure, Scattering, and Intensity

Based-centered (001) plane Body-centered (001) plane

1 & 2 are in-phase to give a 3 is out of phase with 1 & 2

(001) reflection. and cancel each other out.

There is no (001) reflection for a body-centered lattice.



Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity

We consider each atom to be a point source 
for scattering of the x-ray beam. 

The scattering efficiency of an atom is 
represented by f. 

The scattering efficiency of a unit cell is 
represented by F. 



Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity

F is always somewhat less than the sum of 

the scattering of the individual atoms in the 

unit cell. 

Since the value of F depends on the way 

atoms are arranged in a unit cell, 

F is called the structure factor. 

(we will not cover how to calculate F to get the selection rules)



Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity, con’t

The intensity of the diffracted beam does not only 

depend on F, but also on other factors.

2
2 2

2

1 cos 2

sin cos

MI F p e


 

− +
=  

 
I - intensity of the beam

F - structure factor

p - multiplicity

(1 + cos2 2/sin2 cos) - Lorentz-polarization factor

e-2M - temperature factor



Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity, con’t

p - We have already discussed the multiplicity factor (how 
many planes in a family of planes), so let's look at the other 
terms.

Lorentz-Polarization Factor

Polarization factor

The x-ray incident beam is unpolarized and can be resolved 
into two plane polarized components. 

The total scattered intensity of the x-ray beam is the sum of 
the intensities of these two components.

This sum is dependent on angle (2)



Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity, con’t

Lorentz-Polarization Factor

Polarization factor

Polarization is at a maximum at 2 = 00 and at a minimum at 
2 = 900

At 00 it is similar to a beam of light polarized by reflecting off 
the hood of a car.

Polarization factor = (1 + cos2 2/2) where  is the angle 
between the incident beam and reflecting plane.



Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity, con’t

Lorentz-Polarization Factor

Lorentz factor

A combination of two geometric factors

1st factor - related to the volume of the crystal exposed to 
irradiation, spot size changes from a circle to an eclipse as 
angle becomes more steep.

2nd factor - related to the number of crystals favorably 
oriented for diffraction at any Bragg angle, B.

The Lorentz factor differs for powders and single crystals



Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity, con’t

Temperature factor

Effect of temperature on intensity

Atoms vibrate within a crystal, intensities decrease as 
temperature increases. The set of parallel planes at the 
Bragg angle move in and out.
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Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity, con’t

Temperature factor

m - Average displacement of an atom from it's mean position.

The temperature factor = e-2M,

Where M is proportional to m and 2

The calculation of the temperature factor is quite involved 
and usually neglected for many materials.



Diffraction Theory  

Structure, Scattering, and Intensity, con’t

Absorption Factor - A

This factor is the number by which the calculated 

intensity must be multiplied. The calculation of A 

depends on the geometry of the diffraction method.

For a diffractometer – the specimen is usually on a flat plate, 
giving equal angles for the incident and diffracted beams.

Absorption is independent of angle, because of area versus 
depth.

The larger the absorption coefficient of the sample, the lower 
the intensity of the diffracted beam.



Diffraction Theory  

Diffraction

Intensity Equation

The intensity equation is valid when:

- the crystals making up the specimen are 
randomly oriented in space.

- the crystals consist of small mosaic blocks 
– “ideally imperfect” crystal

The intensity equations becomes invalid 
when preferred orientation is present in the 
sample.



Diffraction Theory  
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Diffraction Theory  

Diffraction

Structure, Scattering, and Intensity, con’t

So to sum up: The factors that affect intensity:

1) Structure factor

2) Polarization factor

3) Lorentz factor

4) Multiplicities

5) Temperature factor

6) Absorption factor - absorption of x-rays by the sample

7) Preferred orientation

8) Extinction coefficient - applies to single crystals - not 
applicable to powders



Crystallography 

Crystal Structures

Online tools 

https://crystals.symotter.org/viztools/

https://www.jove.com/v/10462/single-crystal-and-powder-x-ray-

diffraction

https://www.jove.com/v/10446/x-ray-diffraction-for-determining-

atomic-and-molecular-structure

https://myscope.training/XRD_XRD_basics



Assignments

Homework Assignment 2: Due Today

Homework 3: Due Tuesday, 12-3-24 (see next slide)

Read this website page and listen to the videos:

https://www.sciencemuseum.org.uk/objects-and-stories/chemistry/x-ray-

crystallography-revealing-our-molecular-world

Read Chapters 1&2&3 from the following textbooks:

-X-ray Diffraction, A Practical Approach by Norton

-Elements of X-ray Diffraction by Cullity and Stock 

-Introduction to X-ray powder Diffractometry 
by Jenkins and Synder

https://www.sciencemuseum.org.uk/objects-and-stories/chemistry/x-ray-crystallography-revealing-our-molecular-world


Crystallography 

Homework #3:

A metal oxide has the fluorite structure. It therefore 

has the fcc Bravais lattice with four formula units per 

unit cell. The density is 7.214 g/cm3. The distance 

between (521) plane is 0.09879 nm.

a. What is the lattice parameter?

b. What is the spacing between the 111 planes?

c. What is the formula weight of the material?

d. What is the angle between the [741] and [123] directions?

e. What is the material?




